Section 5.1: Square Root Property

#1 - 20: Solve the equations using the square root property.

1) $x^2 = 16$ 2) $y^2 = 25$ 3) $b^2 = -49$ 4) $a^2 = -16$ 5) $m^2 = 98$ 6) $d^2 = 24$ 7) $x^2 = -75$ 8) $x^2 = -54$ 9) $(x-3)^2 = 25$ 10) $(x+2)^2 = 81$ 11) $(2x-5)^2 = 49$ 12) $(3x+7)^2 = 121$ 13) $(x-4)^2 = 150$ 14) $(x-8)^2 = 48$ 15) $(2x-6)^2 = -75$ 16) $(5x+9)^2 = 84$ 17) $\left(x+\frac{1}{3}\right)^2 = 49$ 18) $\left(x-\frac{1}{2}\right)^2 = 16$ 19) $\left(x+\frac{2}{3}\right)^2 = 21$ 20) $\left(y-\frac{1}{5}\right)^2 = 19$

#21 - 38: Find a value of C so that the expression becomes a perfect square. Factor your result. We refer to this method as completing the square.

21) $x^2 + 6x + C$ 22) $b^2 + 8b + C$ 23) $y^2 + 10y + C$ 24) $x^2 + 16x + C$ 25) $b^2 - 4b + C$ 26) $d^2 - 12d + C$ 27) $x^2 - 14x + C$ 28) $y^2 - 20y + C$ 29) $x^2 + 6x + C$ 30) $b^2 + 14b + C$ 31) $x^2 + 3x + C$ 32) $v^2 + 9v + C$ 33) $x^2 - 7x + C$ 34) $y^2 - 5y + C$ 35) $a^2 - 11a + C$ 36) $b^2 - b + C$ 37) $b^2 + \frac{1}{2}b + C$ 38) $a^2 - \frac{1}{3}a + C$

#39 - 62: Solve by completing the square. Specifically, rewrite the equation so it can be solved using the square root property. That is, first solve for C, like in problems 21-38, and then solve using square roots like problems 1-24.

39) $x^2 + 6x = 7$	40) $b^2 + 8b = 9$	41) $a^2 + 10a - 24 = 0$	42) $y^2 + 6y - 16 = 0$
43) $a^2 - 10a = 75$	44) $y^2 - 6y = 7$	45) $x^2 - 8x + 7 = 0$	46) $y^2 - 4y + 3 = 0$
47) $x^2 + 2x = 6$	48) $b^2 + 8b = 4$	49) $a^2 - 12a - 18 = 0$	50) $x^2 - 6x + 24 = 0$
51) $x^2 + 6x = 5$	52) $y^2 + 10y = 12$	53) $b^2 + 6b = 11$	54) $x^2 - 6x = -4$
55) $x^2 + 8x = -20$	56) $y^2 - 6y = -16$	57) $x^2 + 3x + 5 = 0$	58) $b^2 + b - 4 = 0$
59) $2x^2 + 6x - 5 = 0$	60) $3x^2 + x - 4 = 0$	61) $4x^2 + x - 3 = 0$	62) $2x^2 + 23x + 11 = 0$

Section 5.2: Quadratic Formula

 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ 1) Solve: $x^2 - 4x - 12 = 0$ by 2) Solve: $x^2 - 6x - 7 = 0$ by a) Factoring a) Factoring b) Completing the square b) Completing the square c) The quadratic formula c) The quadratic formula 3) Solve: $y^2 + 10y = 5$ by 4) Solve: $b^2 + 6b = 3$ a) Completing the square a) Completing the square b) The quadratic formula b) The quadratic formula (This can't be solved by factoring) (This can't be solved by factoring)

#5 - 16: Solve using the quadratic formula.

5) $y^2 + 6y - 16 = 0$	6) $z^2 + 10z - 9 = 0$	7) $x^2 + 6x + 9 = 0$	8) $d^2 + 2d + 1 = 0$
9) $y^2 - 2y + 6 = 0$	10) $x^2 - 3x + 5 = 0$	11) $2w^2 + 3w - 5 = 0$	12) $3t^2 - 7t + 4=0$
13) $3z^2 - 4z + 3 = 0$	14) $2t^2 - 6t + 5 = 0$	15) $9y^2 - 12y + 2 = 0$	16) $9x^2 - 12x + 4 = 0$

#17 - 32: Rewrite in the form $ax^2 + bx + c = 0$ with a > 0, then solve using the quadratic formula.

17) $y^2 + 5y = 6$	18) $x^2 + 9x = 10$	19) $2t^2 + 5t = 8$	20) $3x^2 - 6x = -2$
21) $x^2 = 3 - 5x$	22) $y^2 = 4 - 5y$	23) $3y + 4y^2 = 2$	24) $-5y - 6y^2 = 4$
25) $(x+1)(x-3)=12$	26) $(x-3)(x-4)=2$	27) $2x(x-1)=40$	28) $3x(x-1) = 6$
29) $3x(x+1) - 5x = 4$	30) $2x(x-3) + 5(x-4) = 9$		
31) $y(y-3) + 2y = 4$	32) $s^2 + s(s-4) = 5s+6$		

Section 5.3: Graphs of Quadratic Functions

#1 - 12: Make a table of values and sketch the function. Identify the vertex.

1) $f(x) = x^2$ 2) $g(x) = x^2 + 2$ 3) $k(x) = x^2 + 4$ 4) $h(x) = x^2 - 3$ 5) $n(x) = x^2 - 6$ 6) $f(x) = x^2 - 2$ 7) $f(x) = 3x^2 - 4$ 8) $g(x) = 2x^2 - 6$ 9) $b(x) = -5x^2 + 12$ 10) $g(x) = -4x^2 + 9$ 11) $m(x) = -2x^2 + 1$ 12) $k(x) = -6x^2 + 15$

#13 - 24: Make a table of values and sketch the function. Identify the vertex and axis of symmetry.

13) $f(x) = (x-2)^2$ 14) $g(x) = (x-3)^2$ 15) $m(x) = (x-1)^2$ 16) $k(x) = (x-7)^2$ 17) $n(x) = (x+3)^2$ 18) $h(x) = (x+5)^2$ 19) $f(x) = 3(x-2)^2$ 20) $g(x) = 4(x-1)^2$ 21) $b(x) = \frac{-1}{2}(x-5)^2$ 22) $f(x) = \frac{-1}{3}(x-1)^2$ 23) $r(x) = \frac{2}{5}(x+1)^2$ 24) $f(x) = \frac{1}{4}(x+2)^2$

#25 - 36: Make a table of values and sketch the function. Identify the vertex and axis of symmetry. Identify whether the vertex is a maximum or minimum point, then state the maximum or minimum value.

25) $f(x) = (x-3)^2 + 4$ 26) $g(x) = (x-2)^2 + 6$ 27) $h(x) = 2(x+3)^2 - 4$ 28) $m(x) = 3(x+1)^2 + 2$ 30) $f(x) = \frac{1}{3}(x+3)^2 - 1$ 31) $m(x) = -2x^2 + 3$ 32) $t(x) = 3x^2 + 6$ 33) $f(x) = -\frac{1}{4}(x+5)^2 - 2$ 34) $n(x) = -3(x-3)^2 - 3$ 35) $b(x) = 2(x+3)^2 + 4$ 36) $f(x) = -2(x+1)^2 + 5$

#37 - 48: Find the vertex using the vertex formula. Make a table of values and sketch the function. Identify the vertex and axis of symmetry. Identify whether the vertex is a maximum or minimum point, then state the maximum or minimum value.

37) $f(x) = x^2 + 6x + 5$	38) $g(x) = x^2 + 10x - 11$	39) $k(x) = x^2 - 4x + 2$
40) $m(x) = x^2 - 2x + 6$	41) $f(x) = 2x^2 + 8x - 3$	42) $h(x) = -2x^2 + 24x - 6$
43) $f(x) = -x^2 + 6x + 4$	44) $g(x) = x^2 - 4x - 2$	45) k(x) = $-3x^2 + 6x - 7$
46) $g(x) = 2x^2 + 12x + 3$	47) $f(x) = 3x^2 - 2x + 1$	48) $n(x) = -2x^2 + 6x + 3$

Section 5.4: Applications of Quadratic Functions

1) When a ball is thrown straight upward into the air, the equation $h = -8t^2 + 80t$ gives the height (h) in feet that the ball is above the ground t seconds after it is thrown.

- a) When does the ball reach its maximum height?
- b) What is the maximum height of the ball?

2) When an object is thrown straight upward into the air, the equation $h=-10t^2+80t+12$ gives the height (h) in feet that the ball is above the ground t seconds after it is thrown.

- a) When does the object reach its maximum height?
- b) What is the maximum height of the object?

3) An object is launched from a platform. The equation for the object's height in meters at time *t* seconds after launch is $h(t) = -4.9t^2 + 19.6t + 58.8$, where *s* is in meters.

- a) When does the object reach its maximum height?
- b) What is the maximum height of the object?

4) A golf ball is hit and its height is given by $h(t) = -4.9t^2 + 29.4t$, where h is its height in meters and t is the time in seconds.

- a) At what time does the golf ball reach its maximum height?
- b) What is the ball's maximum height?

5) If a soccer ball is kicked straight up from the ground, its height above the earth in feet is given by $h(t) = -16t^2 + 32t$ where t is time in seconds.

- a) When does the ball reach its maximum height?
- b) What is the maximum height of the ball?

6) The height h (in feet) above the ground of a baseball depends on the time t (in seconds) it has been in flight. Cameron hits a bloop single whose height is described approximately by the equation: $h = 64t - 16t^2$.

- a) When does the ball reach its maximum height?
- b) What is the maximum height of the ball?

Section 5.4: Applications of Quadratic Functions

7) The height (in feet) of the water level in a reservoir over a 1-year period is modeled by the function $H(t) = 3.3(t-9)^2 + 14$, where t = 1 represents January, t = 2 represents February, and so on.

- a) How low did the water level get that year?
- b) When did it reach its low mark?

8) The height (in feet) of the water level in a reservoir over a 1-year period is modeled by the function $H(t) = 5(t-7)^2 + 3$, where t = 1 represents January, t = 2 represents February, and so on.

- a) How low did the water level get that year?
- b) When did it reach its low mark?

9) The depth (in feet) of the snow at the base of a mountain over a 1-year period is modeled by the function: $H(t) = 4(t-10)^2 + 15$, where t = 1 represents January, t = 2 represents February, and so on.

- a) How low did the snow level get that year?
- b) When did it reach its low mark?

10) The following function can be used to compute the average score on a math placement exam taken between 2000 - 2011: S(t) = t² - 10t + 87. (t = 0 represents 2000, t = 1 represents 2001 and so on.)

- a) In which year was the average math placement score lowest,
- b) What is the lowest average score?

11) The following function can be used to compute the average daily high temperature for any month of the year in a small town in southwestern USA: $T(m) = -m^2 + 14m + 52$. (m = 1 represents January, m = 2 represents February and so on.)

- a) Which month has the highest average daily high temperature?
- b) What is the temperature?

12) The following function can be used to compute the average daily high temperature for any month of the year in a small town in Iceland: $T(m) = -m^2 + 16m + 2$. (m = 1 represents January, m = 2 represents February and so on.)

- a) Which month has the highest average daily high temperature?
- b) What is the temperature?

Section 5.5: Equations in Quadratic Form

#1 - 6: Solve by isolating the term with the square root, and squaring both sides of the equation to eliminate the square root. Make sure to check your answers.

1) $\sqrt{x} = x - 2$ 2) $\sqrt{y} = y - 12$ 3) $y + 2\sqrt{y} - 15 = 0$ 4) $2y + 5\sqrt{y} - 3 = 0$ 5) $x + 2\sqrt{x} - 8 = 0$ 6) $b - 3\sqrt{b} + 2 = 0$

I deleted problems 7 - 10 as I didn't like them too much.

#11 - 19: Solve by substitution. That is create and solve a problem with a "u", then use the solutions to the "u" problem to solve the given problem.

11) $(x+3)^2 + 5(x+3)-6= 0$ 12) $(x-5)^2 + 6(x-5) - 7 = 0$ 13) $(2y+5)^2 + 6(2y+5) + 5 = 0$ 14) $(2x-7)^2 + 4(2x-7) + 3 = 0$ 15) $5(x-6)^2 + 3(x-6) - 8 = 0$ 16) $3(x-1)^2 + 5(x-1) + 2 = 0$ 17) $5(3x-1)^2 + 7(3x-1) + 2 = 0$ 18) $7(3x+7)^2 + 8(3x+7) + 1 = 0$ 19) $5(4x+3)^2 + 2(4x+3) - 3 = 0$ #20 - 29: Solve by factoring or substitution. 20) $x^4 + 3x^2 - 4 = 0$ 21) $y^4 + 8y^2 - 9 = 0$ 22) $n^4 + 5n^2 - 24 = 0$ 23) $a^4 + 5a^2 - 6 = 0$ 24) $x^{-2} + 7x^{-1} - 8 = 0$ 25) $y^{-2} + 26y^{-1} - 27 = 0$ 26) $m^{2/3} + 3m^{1/3} - 4 = 0$ 27) $x^{2/3} + 5x^{1/3} - 6 = 0$ 28) $b^{2/5} - 3b^{1/5} + 2 = 0$ 29) $x^{2/5} - 4x^{1/5} + 3 = 0$

Section 5.6: Quadratic Inequalities

- #1 12: Use the graph of f(x) to solve
- a) f(x) = 0
- b) f(x) > 0
- c) f(x) < 0
- d) $f(x) \ge 0$ e) $f(x) \le 0$
- 1) 2) 10⁷ 10 8 8 6 6 4 4 2 2 (-4,0) (3,0)(-5,0) (2,0)-10-9 -8 -7 -6 -5 -4 -3 -2 -1 -10-9-8-7-6-4-3-2-12 2 8 4 5 6 7 8 9 10 1 1 2 3 4 5 6 7 8 9 10 -4 -4 -6 -6 -8 -8 -10 -10 12 12 -14 -14 3) 4) 12 10 12 10 8 8 6 6 4 4 (-50) -10-9-8-7-6-5-4-3-2-1₂ (Å0) (-40) 2 (3,0) x x 3 4 5 6 7 8 9 10 1 -10-9-8-7-6-54-3-2-12 2 3 4 5 6 7 8 9 10 1 4 4 -6 -8 -6 -10 -8 -12 10 -12 5) 6) 18
 16
 14
 12
 10
 1-18 -16 -14 -12 -10 y 8 8 6 4 2 4 2 (4,0)(2,0)x x 2345678910 1 2 3 4 5 6 7 8 9 10 -10-9-8-7-6-5-4-3-2-12 -10-9-8-7-6-5-4-3-2-b 1 4 -6 -8 -4 -6 -8 -10 -12 -14 -10 -12 -14 -16 -16 -18 -18

Section 5.6: Quadratic Inequalities

#13 - 27: Find the following:

- a) f(x) = 0
- b) f(x) > 0
- c) f(x) < 0
- d) $f(x) \ge 0$
- e) $f(x) \le 0$

13) $f(x) = x^2 + 6x - 16$	14) $f(x) = x^2 + 8x - 20$
15) $f(x) = x^2 - 6x + 5$	16) $f(x) = x^2 - 4x + 3$
17) $f(x) = (x-3)^2 - 4$	18) $f(x) = (x-2)^2 - 25$
19) $f(x) = (x+4)^2 - 49$	20) $f(x) = (x + 3)^2 - 64$
21) $f(x) = -2(x-5)^2 + 50$	22) $f(x) = -4(x-4)^2 + 64$
23) $f(x) = -2(x+6)^2$	24) $f(x) = -3(x+5)^2$
25) $f(x) = (x - 3)^2 + 9$	26) $f(x) = (x-2)^2 + 25$
27) $f(x) = x^2 + 2x + 4$	28) $f(x) = x^2 + 4x + 6$

MAT 120 Chapter 5 practice test

1. Make a table of values. Find the vertex and axis of symmetry and sketch a graph. a) $y = (x-4)^2 - 3$ b) $y = -2(x+5)^2 + 4$

2. Find the vertex by using the vertex formula then make a table of values and sketch a graph. a) $T(x) = 3x^2 - 18x + 22$ b) $s(x) = -x^2 + 10x - 20$

3. Solve the equation using the quadratic formula. a) $6x^2 + 5x = 3$ b) $3x^2 + 5x - 2 = 0$ c) $x^2 - 4x + 8 = 0$

4. Solve by the square root property.

a) $(q+2)^2 = 25$

b) $(t - 6)^2 = 20$

5. Solve the quadratic equation by completing the square and applying the square root property. (0 points for a correct answer gotten by another method)

 $p^2 + 4p = 2$

6. Solve a) $p-8 = 2\sqrt{p}$ b) $x^4 - 7x^2 - 18 = 0$ c) $(x+3)^2 + 5(x+3) - 14 = 0$

- 8) $f(x) = x^2 + 6x 16$ (find the following)
- a) f(x) = 0
- b) f(x) > 0
- c) f(x) < 0
- d) $f(x) \ge 0$
- e) $f(x) \leq 0$