Section 6.1

1)
$$(f + g)(x)$$

= $f(x) + g(x) = (2x+3) + (3-x) = 2x+3 + 3 - x = x + 6$

The function is defined for all values of x, so the domain is all real numbers.

Solution: (f + g)(x) = x + 6

3) (f/g)(x)

$$=\frac{f(x)}{g(x)}=\frac{2x+3}{3-x}$$

To find the domain, ignore the numerator. Find where the denominator equals zero. Exclude this number. domain : computation 3 - x = 0

Solution: $(f/g)(x) = \frac{2x+3}{3-x}$

7) $(g \circ f)(x)$

= g(f(x)) = g(2x + 3)= 3 - (2x + 3) = 3 - 2x - 3 = -2x

The function is defined for all values of x, so the domain is all real numbers.

Solution: $(g \circ f)(x) = -2x$

11) (g - f)(x)

 $= g(x) - f(x) = (5x + 4) - (2x^2 - 5x - 3)$ = 5x + 4 - 2x² + 5x + 3 = -2x² + 10x + 7

The function is defined for all values of x, so the domain is all real numbers.

Solution: $(g - f)(x) = -2x^2 + 10x + 7$

13) $(g \cdot f)(x)$

 $= g(x) * f(x) = (5x + 4)(2x^{2} - 5x - 3)$ = 10x³ - 25x² - 15x + 8x² - 20x - 12 =10x³ - 17x² - 35x - 12

The function is defined for all values of x, so the domain is all real numbers.

Solution:
$$(g \cdot f)(x) = 10x^3 - 17x^2 - 35x - 12$$

15) $(f \circ g)(x)$ = f(g(x)) = f(5x + 4)= $2(5x + 4)^2 - 5(5x + 4) - 3$ = 2(5x + 4)(5x + 4) - 25x - 20 - 3= $2(25x^2 + 20x + 20x + 16) - 25x - 20 - 3$ = $50x^2 + 40x + 40x + 32 - 25x - 20 - 3$ = $50x^2 + 55x + 9$

The function is defined for all values of x, so the domain is all real numbers.

Solution: $(f \circ g)(x) = 50x^2 + 55x + 9$

19) (h+k)(3) = $h(3) + k(3)$	21) (h/k)(5)
= [2(3) + 3] + (3 - 3) = 9 + 0 = 9	$=\frac{h(5)}{k(5)}=\frac{2(5)+3}{3-5}=\frac{13}{-2}=-\frac{13}{2}$
Solution: (h+k)(3)=9	Solution: $(h/k)(5) = -\frac{13}{2}$

25)
$$(h \circ k)(4)$$

 $= h(k(4)) = h(3-4) = h(-1)$
 $= 2(-1) + 3 = -2 + 3 = 1$
Solution: $(h \circ k)(4) = 1$
27) $(k \circ h)(3)$
 $= k(h(3)) = k(2 * 3 + 3)$
 $= k(9) = 3 - 9 = -6$
Solution: $(k \circ h)(3) = -6$

31)
$$\left(\frac{s}{t}\right)(3)$$

$$=\frac{s(3)}{t(3)} = \frac{2(3)^2 - 5(3) - 3}{5 + 3 + 4}$$

$$=\frac{18 - 15 - 3}{15 + 4} = \frac{0}{19} = 0$$
35) $(s \circ t)(0)$

$$= s(t(0)) = s(5 * 0 + 4) = s(4)$$

$$= 2(4)^2 - 5 * 4 - 3 = 32 - 20 - 3 = 9$$
Solution: $(s \circ t)(0) = 9$

Solution: $\left(\frac{s}{t}\right)(3) = 0$

 37) $(s \circ t)(-2)$ 41) (fg)(0)

 = s(t(-2)) = s(5(-2) + 4) = f(0) * g(0) = 1 * (-1) = -1

 To find f(0) look at the graph.

 $= s(-6) = 2(-6)^2 - 5(-6) - 3$ This is asking for the y coordinate of the point that has 0 for its x coordinate (f(0) = 1)

 = 72 + 30 - 3 = 99 To find g(0) look at the graph.

 Solution: $(s \circ t)(-2) = 99$ To find g(0) look at the graph.

 Solution: (fg)(0) = -1 Solution: (fg)(0) = -1

43) $(g/f)(1)$	47) $(g \circ f)(-2)$ First write without composite symbol.
$=\frac{g(1)}{f(1)} = \frac{0}{3} = 0$	=g(f(-2)) ****
To find f(1) look at the graph. This is asking for the y coordinate of the point that has 0 for its x coordinate. (f(1) = 3)	Then find f(-2), which is the y coordinate of the point on the f graph with x of -2.
To find g(1) look at the graph.	f(-2)=-3
This is asking for the y coordinate of the point that has 0 for its x coordinate. (g(1) = 0)	replace f(-2) with 3 in **** above.
Solution: (g/f)(1)= 0	=g(-3)
	Now find g(-3) which is the y coordinate of the point on the g graph with x = -3. g(-3) =8
	Solution: $(g \circ f)(-2)=8$

Section 6.2

#5-12, Sketch a graph and determine whether each function is one to one (you may construct a table of values, use a graphing calculator, or use a technique you already have learned to construct your graph.)

5) f(x) = 2x - 5

Function is one-to-one

no horizontal line can be drawn to touch the graph in more than one place, the function is one-to-one.

Function is not one-to-one

A horizontal line can be drawn to touch the graph in more than one place, the function not is one-toone.

Solution: Function is one-to-one

No horizontal line can be drawn to touch the graph in more than one place, the function is one-to-one.

Solution: Function is not one-to-one

A horizontal line can be drawn to touch the graph in more than one place, the function not is one-toone.

13) $f = \{ (0,1) (1,4) (2,4) (3,5) \}$

The function is not one-to-one because two different points have the same y-value.

Solution: Function is not one-to-one

15) $h = \{(0,3) (5,1) (7,11) (9, -3)\}$

Function is one-to-one because all of the y values are different. Find inverse by switching the x and y's.

Solution: Function is one-to-one $h^{-1} = \{ (3,0) (1,5) (11,7) (-3,9) \}$

19) f(x) = 2x - 4first: replace function symbol with a y y = 2x - 4second: switch x and y, this creates the inverse x = 2y - 4third: solve for y x + 4 = 2y $\frac{x+4}{2} = y$ fourth: write with y on left side (if not already there) $y = \frac{x+4}{2}$ fifth: replace the y with an inverse symbol

Solution: $f^{-1}(x) = \frac{x+4}{2}$

21) $g(x) = \frac{x-2}{3}$ first: replace function symbol with a y $y = \frac{x-2}{3}$ second: switch x and y, this creates the inverse $x = \frac{y-2}{3}$ third: solve for y $3x = 3 * \frac{y-2}{3}$ 3x = y - 2 3x + 2 = yfourth: write with y on left side (if not already there) y = 3x + 2fifth: replace the y with an inverse symbol **Solution:** $g^{-1}(x) = 3x + 2$

25) $m(x) = \sqrt[3]{x}$ first: replace function symbol with a y $y = \sqrt[3]{x}$ second: switch x and y, this creates the inverse $x = \sqrt[3]{y}$ third: solve for y $x^3 = (\sqrt[3]{y})^3$ $x^3 = y$ fourth: write with y on left side (if not already there) $y = x^3$ fifth: replace the y with an inverse symbol **Solution:** $m^{-1}(x) = x^3$

27) $f(x) = x^3 + 2$ first: replace function symbol with a y $y = x^3 + 2$ second: switch x and y, this creates the inverse $x=y^3+2$ third: solve for y $x-2 = y^3$ $\sqrt[3]{x-2} = \sqrt[3]{y^3}$ $\sqrt[3]{x-2} = y$ fourth: write with y on left side (if not already there) $y = \sqrt[3]{x-2}$ fifth: replace the y with an inverse symbol **Solution:** $f^{-1}(x) = \sqrt[3]{x-2}$

Section 6.3

13) $f(x) = 3^x$

х	f(x)	computations
0	1	$f(0)=3^0=1$
1	3	$f(1)=3^1=3$
-1	1/3	$f(-1) = 3^{-1} = 1/3$
-2	1/9	$f(-2)=3^{-2}=1/3^2=1/9$

х	h(x)	computations
0	1	$h(0) = \left(\frac{1}{3}\right)^0 = 1$
-1	1/3	$h(1) = \left(\frac{1}{3}\right)^1 = \frac{1}{3}$
1	3	$h(-1) = \left(\frac{1}{3}\right)^{-1} = \left(\frac{3}{1}\right)^{1} = 3$
-2	9	$h(-2) = \left(\frac{1}{3}\right)^{-2} = \left(\frac{3}{1}\right)^2 = 9$
2	1/9	$h(2) = \left(\frac{1}{3}\right)^2 = \frac{1}{9}$
-3	27	$h(-3) = \left(\frac{1}{3}\right)^{-3} = \left(\frac{3}{1}\right)^3 = 27$

Section 6.3

х	f(x)	computations
3	1	$f(3) = 2^{3-3} = 2^0 = 1$
4	2	$f(4) = 2^{4-3} = 2^1 = 2$
2	1/2	$f(2)=2^{2-3}=2^{-1}=1/2$
5	4	$f(5) = 2^{5-3} = 2^2 = 4$
1	1/4	$f(1)=2^{1-3}=2^{-2}=\frac{1}{2}^{2}=\frac{1}{4}$

19) $f(x) = 2^{x+4}$

х	f(x)	computations
-4	1	$f(-4)=2^{-4+4}=2^0=1$
-5	1/2	$f(-5) = 2^{-5+4} = 2^{-1} = 1/2$
-3	2	$f(-3) = 2^{-3+4} = 2^1 = 2$
-6	1/4	$f(-6) = 2^{-6+4} = 2^{-2} = \frac{1}{2} = \frac{1}{4}$

23) The number of computers infected by the spread of a virus through email can be described by the exponential function $c(t)=4(1.02)^t$, where t is the number of minutes since the first infected e-mail was opened. Approximate the number of computers that will be infected after 6 hours (240 minutes). (round to the nearest computer)

I just need to plug in 240 for t in the equation. I will need to use my calculator to get this answer.

c(240) = 4(1.02)²⁴⁰ = 464

Solution: 464 computers

25) The charge remaining in a battery decreases as the battery discharges. The charge C (in coulombs) after t days is given by the formula $C(t)=0.0003(0.7)^{t}$. Find the charge after 5 days. (carry 6 decimal places in your answer)

I need to evaluate the function at t = 5. I will need my calculator to simplify.

 $C(0) = 0.0003(0.7)^5 = 0.00005$

Solution: 0.00005 coulombs

Section 6.3

#26-30: Use the compound interest formula $A = P\left(1 + \frac{r}{n}\right)^{nt}$ to answer the following.

27) An initial deposit of \$1,000 earns 4% interest compounded twice per year. How much will be in the account after 5 years?

P = 1,000 r = .04 n = 2 t = 5

Substitute these values in the formula. Then use my calculator to evaluate.

 $1000\left(1+\frac{.04}{2}\right)^{2*5}$ =1218.99

Solution: \$1218.99

Section 6.4

1) $3^2 = 9$

The base of the exponential function (3) is the base or subscripted part of the logarithm. Switch the 2 and the 9.

Solution: log₃9 =2

5) $3^{-1} = \frac{1}{3}$

The base of the exponential function (3) is the base or subscripted part of the logarithm. Switch the -1 and the 1/3.

Solution: $\log_3(1/3) = -1$

7) $e^{y} = x$

The base of the exponential function (e) is the base or subscripted part of the logarithm. Switch the y and the x.

Solution: log_ex = y

11) log₃81=4

Write the problem without the log. The 3 remains the base in the exponential function. Switch the 81 and 4.

Solution: 3⁴ **= 81**

13) log₂64=6

Write the problem without the log. The 2 remains the base in the exponential function. Switch the 64 and 6.

Solution: $2^6 = 64$

17) log x=3

Since no base is written the base is assumed to be 10. You can think of the problem like this:

 $\log_{10} x = 3$

Write the problem without the log. The 10 remains the base in the exponential function. Switch the x and 3.

Solution: $10^3 = x$

Section 6.4

19) log ₂ 2	23) log ₃ 1
This is asking the question $2^{?} = 2$, The answer must be 1 because: $2^{1} = 2$	This is asking the question $3^{?} = 1$, The answer must be 0 because: $3^{0} = 1$
Solution: 1	Solution: 0
27) log ₄ 64	31) log1
This is asking the question $4^{?} = 64$, The answer must be 3 because: $4^{3} = 64$	Remember if no base is written the base is assumed to be a 10. Think of the problem as:
Solution: 3	log ₁₀ 1
	This is asking the question 10 [?] = 1, The answer must be 0 because: 10 ⁰ = 1
	Solution: 0
33) log100	37) log ₂ 2 ³
This is achieve the supertises 10° 100	This is calling the supertion 2^{2} 2^{3}

This is asking the question $10^{?} = 100$, The answer must be 2 because: $10^{2} = 100$

Solution: 2

This is asking the question $2^{?} = 2^{3}$, The answer must be 3 because: $2^{3} = 2^{3}$

41) log₄4⁵

This is asking the question $4^{?} = 4^{5}$, The answer must be 5 because: $4^{5} = 4^{5}$

Solution: 5

Solution: 3

Section 6.4

49) $y = \log_2 x$

 $2^{y}=x$ (problem written in exponential form)

Domain	(0.	(w
Domain	τυ,	~~ <i>j</i>

	- (- , ,
х	у	computations
1	0	$(y=0) 2^0 = x$
		1 = x
1/2	-1	$(y = -1) 2^{-1} = x$
		½ = x
2	1	$(y=1) 2^1 = x$
		2 = x
1⁄4	-2	$(y=-2) 2^{-2} = x$
		1⁄4 = x
4	2	$(y=2) 2^2 = x$ 4 = x
		4 = x

53) $y = \log_2(x+4)$

 $2^{y} = x + 4$ (problem written in exponential form) Domain (-4, ∞)

у	computations
0	$(y = 0) 2^0 = x + 4$
	1 = x + 4
	-3 = x
-1	$(y=-1) 2^{-1} = x$
	$\frac{1}{2} = x + 4$
	.5 = x+4
	-3.5 = x
1	$(y=1) 2^1 = x+4$
	2 = x + 4
	-2 = x
-2	$(y = -2) 2^{-2} = x+4$
	1⁄4 = x+4
	0.25 = x+4
	-3.75 = x
2	$(y=2) 2^2 = x+4$
	4 = x + 4
	0 = x
	0 -1 1 -2

Section 6.4

57) $y = log_{1/2}(x+1)$

13) y= e^x (from 6.5)

equation written in exponential form $(1/2)^{y} = x + 1$ Domain $(-1, \infty)$

		 ↑ y
		5
-8		-4 -2 2 4 6 8
-8	-6	-4 -2 2 4 6 8
		-5
х	У	computations
0	0	$(y = 0) (1/2)^0 = x+1$
		1 = x+1
		0 = x
1	-1	$(y = -1) (1/2)^{-1} = x + 1$
		$(2/1)^1 = x + 1$
		2 = x+1
		1 = x
-1/2	1	$(y=1) (1/2)^1 = x+1$
		$\frac{1}{2} = x + 1$
		1⁄2-1 = x
		$\frac{1}{2} - \frac{2}{r} - r$
	_	$\frac{1}{2} - \frac{2}{2} = x$ (y = -2) (1/2) ⁻² = x+1
3	-2	$(y = -2) (1/2)^{-} = x+1$
		$(2/1)^2 = x+1$
		4 =x+1
		3=x
-3/4	2	$(y=2) (1/2)^2 = x+1$
		1⁄4 = x+1
		1⁄4 - 1 = x
		$\frac{1}{4} - \frac{4}{4} = x$
		-3/4 = x

Х	Y	computations – done on
		calculator
0	1	y=e ⁰
		y = 1
-1	.37	y=e ⁻¹ =.37
		=.37
1	2.72	$y = e^1$
		y = 2.72
-2	.14	$y = e^{-2}$
		y = .14
2	7.39	$y = e^2$
		γ=7.39

х	Y	computations – done on
		calculator
2	0	$y = e^{2-2}$
		y= e ⁰
		y = 1
3	2.72	$y = e^{3-2}$
		$y = e^1$
		y = 2.72
1	.37	y= e ¹⁻²
		$y = e^{-1}$
		y = 0.37
4	7.39	y= e ⁴⁻²
		$y = e^2$
		y = 7.39
0	.14	$y=e^{0-2}$ y = e^{-2}
		$y = e^{-2}$
		y = 0.14

19) y = ln(x)Equation written in exponential form: $e^{y} = x$ Domain $(0, \infty)$

х	У	computations- done on calculator
1	0	$(y=0) e^0 = x$
		1 = x
2.72	1	$(y = 1) e^1 = x$
		2.72 = x
.37	-1	$(y = -1) e^{-1} = x$
		0.37 = x
7.39	2	$(y = 2) e^2 = x$
		7.39 = x
.14	-2	$(y = -2) e^{-2} = x$
		0.14 = x

Section 6.5

х	у	computations, done on calculator
-1	0	$(y=0) e^0 = x+2$
		1 = x+2
		-1 = x
.72	1	$(y=1) e^1 = x+2$
		2.72 = x+2
		x = .72
-1.63	-1	$(y=-1) e^{-1} = x+2.$
		.37 = x+ 2
		-1.63 = x
5.39	2	$(y = 2) e^2 = x + 2$
		7.39 = x+2
		5.39 =x
-1.86	-2	$(y=-2) e^{-2} = x+2$
		0.14 = x+2
		-1.86 = x

25) y = ln(3 - x)Equation written in exponential form: $e^{y} = 3 - x$ I will rewrite a bit more $x = 3 - e^{y}$ Domain $(-\infty, 3)$

х	у	computations- done on calculator
2	0	$(y=0) x = 3-e^0 = 2$
2.63	-1	$(y=-1) x = 3 - e^{-1} = 2.63$
.28	1	$(y=1) x = 3 - e^1 = 3 - 2.72 = .28$
2.86	-2	$(y=-2) x = 3-e^{-2} = 314 = 2.86$
-4.39	2	$(y=2) x = 3-e^2 = 3 - 7.39 = -4.39$

Section 6.5

29) An initial investment of \$10,000 earns 5.25% interest compounded continuously. What will the investment be worth in 8 years? P = 10000 r = .0525 t = 8 Substitute values in formula Use a calculator to evaluate. A=10000e^{8*.0525} = 15219.62 Solution: \$15219.62

Section 6.6

1) log ₂ 16	5) log ₈ 8 ⁵
This is asking the question $2^{?} = 16$, the answer is 4, because $2^{4} = 16$	This is asking the question $8^{?} = 8^{5}$, the answer is 5, because $8^{5} = 8^{5}$
Solution: 4	Solution: 5
 9) In(e) Think of this as log_ee This is asking the question e[?] = e, the answer is 1, because e¹ = e Solution: 1 	11) $\log_2 64^3$ This is asking the question $2^7 = 64^3$ I will need to do a bit of algebra to solve this. I know $2^6 = 64$. I can rewrite the problem. $2^7 = (2^6)^3$ I will clear the parenthesis by multiplying exponents $2^7 = 2^{18}$ Now it should be obvious that 18 is the solution. Solution: 18
Continu C C	

13) Which of these is a true	a) If I replace with the values to	b) If I replace with the values
statement?	the left:	above:

a) $\log_2(4*8) = \log_2 4 * \log_2 8$	$\log_2(4*8) = \log_2 4 * \log_2 8$	
b) $\log_2(4*8) = \log_2 4 + \log_2 8$		$\log_2(4*8) = \log_2 4 + \log_2 8$
	5 = 2*3	5 = 2 + 3
To answer these questions I need to know what each part	5 = 6	5 = 5 (this is true
equals.	This is false.	
$\log_2(4*8) = \log_2 32 = 5$		

 $\log_2 4 = 2$

 $\log_2 8 = 3$

Solution: a is false, b is true

15) Which of these is a true statement?	a) If I replace with the values above:	b) If I replace with the values above:
a) $log_2 \frac{16}{2} = \frac{log_2 16}{log_2 2}$	$\log_2 \frac{16}{2} = \frac{\log_2 16}{\log_2 2}$	$\log_2 \frac{16}{2} = \log_2 16 - \log_2 2$
b) $log_2 \frac{16}{2} = log_2 16 - log_2 2$	$3 = \frac{4}{1}$ (this is false)	3 = 4 - 1
I need to know what each piece is equal to, before I can answer the question.		3=3 (this is true)
$log_2 \frac{16}{10} = log_2 8 = 3$		

 $log_2 \frac{10}{2} = log_2 8 = 3$

 $\log_2 16 = 4$

log₂2 =1

Solution: a is false, b is true

17) Which of these is a true	a) I will replace the values to	b) I will replace the values to
statement?	determine if this is true or not.	determine if this is true or not.
a) $\log 100^3 = (\log 100)^3$		
b) log100 ³ = = 3log100	$\log 100^3 = (\log 100)^3$	$\log 100^{3} = = 3\log 100$

I need to compute each piece before I can answer the question. You can use your calculator if you can't do these by hand yet. $6 = (2)^{3}$ 6 = 8 (this is false)

6 = 3*2 6 = 6 (this is true)

 $\log 100^{3} = 6$

log100 = 2

Solution: a is false, b is true

21) $\log_5(25x^2y^6)$ = $\log_525 + \log_5x^2 + \log_5y^6$ = $2 + 2\log_5x + 6\log_5y$ Solution: $\log_525 + 2\log_5x + 6\log_5y$ or $2 + 2\log_5x + 6\log_5y$ = $\log_2x + \log_2y^3 - \log_2z^2$ = $\log_2x + 3\log_2y - 2\log_2z$

Solution: $log_2x + 3log_2y - 2log_2z$

25)
$$log_2 \frac{xy}{w^2 z^5}$$

= $log_2(xy) - log_2(w^2 z^5)$
= $log_2x + log_2y - (log_2w^2 + log_2z^5)$
= $log_2x + log_2y - 2log_2w - 5log_2z$
Solution: $log_2x + log_2y - 2log_2w - 5log_2z$

33) $2\log_3 x + 4\log_3 y + \log_3 z$	35) $5\log_2 x + 3\log_2 y - \log_2 z$
$= \log_3 x^2 + \log_3 y^4 + \log_3 z$	$= \log_2 x^5 + \log_2 y^3 - \log_2 z$

 $= \log_3 x^3 y^4 z$

Solution: $log_3 x^3 y^4 z$

$$=\log_2(x^5y^3) - \log_2 z$$

$$= log_2 \frac{x^5 y^3}{z}$$

Solution:
$$log_2 \frac{x^5 y^3}{z}$$

37) 4logx – 2logy – 3 logz

 $=\log x^4 - (2\log y + 3\log z)$

 $= \log x^4 - (\log y^2 + \log z^3)$

 $=\log x^4 - \log(y^2 z^3)$

$$= \log \frac{x^4}{y^2 z^3}$$

Solution: $log \frac{x^4}{y^2 z^3}$

Section 6.7

3) $2^{x+1} = 32$ $2^{x+1} = 2^5$

x+1 = 5

x = 4

This solution will check, but I am not showing the work.

Solution: x = 4

5) $\left(\frac{1}{2}\right)^{x} = 16$

 $\frac{1}{2} = 2^{-1}$ I need to use this fact to solve this problem without logarithms.

Solution: $x = -4$
Check x = -4
$\left(\frac{1}{2}\right)^{-4} = 16$
$\left(\frac{2}{1}\right)^4 = 16$
16 = 16
Th e solution checks.
x = -4 is the only solution

7) $2^{4-x} = 64$ $2^{4-x} = 2^{6}$
4 – x =6
-x = 6 – 4
-x = 2
x = -2

Check x = -2
$2^{4-(-2)} = 64$
$2^{4+2} = 64$
$2^6 = 64$
64 = 64
The solution checks.
x = -2 is the only solution.

Solution: x = 1/5

9) $32^{x} = 2$

 $(2^5)^x = 2^1$ $2^{5x} = 2^1$

5x = 1 x = 1/5

Check $x = 1/5$	
$32^{1/5} = 2$	
$\sqrt[5]{32} = 2$	
2 = 2	
The solution checks.	
x = 1/5 is the only solution.	

Section 6.7

13) $3^{x} = 6$

take log of both sides: $log3^{x} = log6$ make exponent coefficient: xlog3 = log 6divide: $x = \frac{log6}{log3}$ or $log_{3}6$ (I will get a decimal approximation using my calculator)

Solution: x = log₃6 approx: 1.63

Check x = 1.63 (because I am checking a rounded answer, this might not check quite as nicely as the last few problems.

3^{1.63} = 6 5.9938 = 6 (this isn't exactly 6=6, but it is close enough) 15) $e^x = 12$ I will take the In of both sides, because of the e in the problems.

take ln of both sides: $ln(e^x) = ln(12)$ make exponent coefficient: xlne = ln(12) substitute ln(e) =1: x(1) = ln(12) x = ln(12) x = 2.48

Solution: x = ln(12) approx: 2.48

Check x = 2.48

e^{2.48} = 12 11.941 = 12 (this is still close enough because I am using a rounded answer)

19) $32e^{2x} = 128$ first divide by $32: \frac{32e^{2x}}{32} = \frac{128}{32}$

$$e^{2x} = 4$$

I will take the In of both sides: $\ln(e^{2x}) = \ln 4$

make exponent coefficient: 2xlne = ln4

replace lne with 1: $2x = \ln 4$

divide: $x = \frac{ln4}{2}$

(This solution will check, I am not going to show how this solution checks)

Solution: $x = \frac{ln(4)}{2}$ approx: .69

Section 6.7

Check x = 9

25) $\log_3 x = 2$ rewrite in exponential form: $3^2 = x$ 9 = xSolution: x = 9

 $log_39 = 2$ (you can evaluate the logarithm on your calculator, if you can't do it in your head) 2 = 2

The solution checks and x = 9 is the only solution.

27) ln x = 1

rewrite with $ln = log_e$

log_ex = 1

write without log

 $e^1 = x$

Solution: x = e (approx 2.72)

check x = e

ln e = 1 1 = 1

The solution checks. x = e is the only solution.

31) $\log_4(3x-6) = -1$ write in exponential form $4^{-1} = 3x-6$ $\frac{1}{4} = \frac{3x-6}{1}$ (cross multiply) 4(3x-6) = 1*1 12x - 24 = 1 12x = 25 x = 25/12Solution: x = 25/12

35) $\log_2(x-1) = 3$ write without log $2^3 = x - 1$ 8 = x - 19 = x

Solution: x = 9

check x = 4 $log_4 64 = 3$ (again, use your calculator if you can't do the log in your head) 3 = 3The solution checks. x = 4 is the only solution. Check x = 9 $log_2(9-1) = 3$ $log_28 = 3$ (again, use your calculator if you can't do the log in your head) 3 = 3The solution checks. x = 3 is the only solution.

Section 6.7

37) $\log_2(2x)=5$ write without the logarithm

 $2^5 = 2x$

32 = 2x

16 = x

(This solution checks, but I will not include the checking here.)

Solution: x = 16

39) $\log(x+1) = \log(3x-2)$

you can solve be dropping the logs and equating the arguments.

x+1 = 3x - 2-2x = -3 = $x = \frac{-3}{-2} = \frac{3}{2}$

Solution: x = 3/2

Check
$$x = 3/2$$

 $log\left(\frac{3}{2} + 1\right) = log\left(3 * \frac{3}{2} - 2\right)$
 $log\left(\frac{3}{2} + \frac{2}{2}\right) = log\left(\frac{9}{2} - \frac{4}{2}\right)$
 $log\left(\frac{5}{2}\right) = log\left(\frac{5}{2}\right)$
The solution checks.
 $x=3/2$ is the only solution.

Section 6.7

Solution: x = 2

43) $\log_2 x - \log_2(x+6) = -2$ write as a single log $\log_2 \frac{x}{x+6} = -2$ write without the log, in exponential form $2^{-2} = \frac{x}{x+6}$ replace 2^{-2} with 1/4: $\frac{1}{4} = \frac{x}{x+6}$ cross multiply 4x = x + 6 3x = 6x = 2

write in exponential form: $2^2 = \frac{x}{x-6}$ $4 = \frac{x}{x-6}$ clear fractions: $4(x-6) = \frac{x}{x-6}(x-6)$ 4x - 24 = x 3x = 24x = 8

45) $\log_2 x - \log_2 (x - 6) = 2$

write a single log: $log_2 \frac{x}{x-6} = 2$

Check x = 2 $log_2 2 - log_2(2+6) = -2$ $1 - log_2 8 = -2$ 1-3 = -2 -2 = -2The solution checks. x = -2 is the only solution.

Solution: x = 8

Check x = 8 $\log_2 8 - \log_2(8-6) = 2$ $3 - \log_2 2 = 2$ 3 - 1 = 2 2 = 2The solution checks. x = 8 is the only solution

Section 6.7

47) $\log_2(x+6) - \log_2(3x+2) = -1$ 51) $\log_3(x+6) + \log_3(3x) = 4$ write as a single log: $log_2 \frac{x+6}{3x+2} = -1$ write as a single log: $log_3(x+6)(3x) = 4$ simplify: $\log_3(3x^2 + 18x) = 4$ write in exponential form: $2^{-1} = \frac{x+6}{3x+2}$ write in exponential form: $3^4 = 3x^2 + 18x$ replace 2⁻¹ with 1/2": $\frac{1}{2} = \frac{x+6}{3x+2}$ $81 = 3x^2 + 18x$ cross multiply: 1(3x+2) = 2(x+6)divide by 3: $\frac{81}{3} = \frac{3x^2}{3} + \frac{18x}{3}$ Solve: 3x + 2 = 2x + 12 $27 = x^2 + 6x$ x = 10 $0 = x^2 + 6x - 27$ 0 = (x+9)(x-3)This solution will check. I am not x+9 = 0 or x - 3 = 0including the work. x = -9, or x = 3Solution: x = 10

Solution: x =3 x = -9 is extraneous

Check x = 3	Check $x = -9$
log ₃ (3+6) + log ₃ (3*3) = 4	log ₃ (-9+6)+log ₃ (3*(-9)) = 4
$\log_3 9 + \log_3 9 = 4$	$\log_3(-3) + \log_3(-27) = 4$
2 + 2 = 4	Each of these logs is a non-real number.
The solution checks. x = 3 is the only solution.	The solution does not check
	x = -9 is extraneous

140

Section 6.7

Use the formula: $P = P_0 e^{kt}$, where P_0 is the initial population at t=0, and k is the rate of growth.

57) The bacterial in a laboratory culture increased from an initial population of 500 to 1,500 in 3 hours. How long will it take the population to reach 10,000? (hint first use the 500 to 1,500 in 3 hours and the formula above to solve for k, then use the 10,000 to answer the question.) (round t the nearest hour)

Use the first group of numbers and the formula to solve for k.

P = 1500 $P_0 = 500$ t = 3

Substitute values into equation: $1500 = 500e^{k^{*3}}$

(divide by 500) $3 = e^{3k}$

(take the ln of both sides) $\ln(3) = \ln(e^{3k})$

(make the exponent a coefficient) ln(3) = 3kln(e)

(substitute lne = 1) ln(3) = 3k

divide by 3 $\frac{\ln(3)}{3} = k$

Now use the next bit of information to answer the question.

P = 10000 $P_0 = 500$ $k = \frac{\ln(3)}{3}$ continued in right column 57) continued:

put the values in the formula $10000 = 500e^{ln3/_{3}t}$

(divide by 500)
$$20 = e^{\ln 3/3t}$$

(take the ln of both sides) $\ln(20) = lne^{ln3/3t}$

(make exponent a coefficient) $\ln(20) = \frac{\ln 3}{3}t(\ln e)$

(replace lne with 1) $\ln(20) = \frac{\ln(3)}{2}t$

(multiply by
$$\frac{3}{\ln(3)}$$
) $\frac{3}{\ln(3)}\ln(20) = \frac{3}{\ln(3)} * \frac{\ln(3)}{3}t$

(use your calculator) $\frac{3}{\ln(3)}\ln(20) = t$ 8.1805 = t

Solution: About 8 hours

Section 6.7

Use the continuous compound interest formula: $A = Pe^{rt}$, where P is the initial investment, r the annual interest rate, and t the number of years to solve the following.

61) How long will it take an initial investment of \$1,000 to double if it is expected to earn 6% interest compounded continuously? (round to 1 decimal place)	63) How long will it take an initial investment of \$10,000 to grow to \$15,000 if it is expected to earn 4% interest compounded continuously? (round to 1 decimal place)
find values for the formula P = 1,000	find values for the formula:
A = 2,000 (goal is to double the initial investment. r = $.06$	A = 15000 P = 10000 r = .04
Substitute these values into the formula. 2000=1000e ^{.06t}	substitute into formula 15000= 10000e ^{.04t}
(divide by 1000) $2 = e^{.06t}$	(divide by 10000) $1.5 = e^{.04t}$
(take In of both sides) $In(2) = In(e^{.06t})$	(take In of each side) In(1.5) = In(e ^{.04t})
(make exponent coefficient)	
ln(2) = (.06t)lne	(make exponent a coefficient) ln(1.5) = .04tln(e)
(lne = 1) ln(2) = .06t	(ln(e) = 1) ln(1.5) = .04t
divide: $\frac{\ln(2)}{.06} = t$	(divide) $\frac{\ln(1.5)}{0.4} = t$
(use calculator) 11.6 = t	.04
Solution: about 11.6 years	(use calculator) t = 10.1 Solution: about 10.1 years