Chapter 6: Exponential and Logarithmic Functions

Selected Solutions to Odd Problems

Section 6.1

> 1) $(f+g)(x)$
> $=f(x)+g(x)=(2 x+3)+(3-x)=2 x+3+3-x=x+6$

The function is defined for all values of x, so the domain is all real numbers.

Solution: $(\mathrm{f}+\mathrm{g})(\mathrm{x})=\mathrm{x}+\mathbf{6}$
7) $(g \circ f)(x)$
$=g(f(x))=g(2 x+3)$
$=3-(2 x+3)=3-2 x-3=-2 x$
The function is defined for all values of x, so the domain is all real numbers.

Solution: $(g \circ f)(x)=-2 x$
13) $(g \cdot f)(x)$
$=g(x) * f(x)=(5 x+4)\left(2 x^{2}-5 x-3\right)$
$=10 x^{3}-25 x^{2}-15 x+8 x^{2}-20 x-12$ $=10 x^{3}-17 x^{2}-35 x-12$

The function is defined for all values of x, so the domain is all real numbers.

Solution: $(g \cdot f)(x)=10 x^{3}-17 x^{2}-35 x-12$
3) (f/g)(x)
$=\frac{f(x)}{g(x)}=\frac{2 x+3}{3-x}$
To find the domain, ignore the numerator.
Find where the denominator equals zero.
Exclude this number.
domain : computation $3-x=0$

$$
3=x
$$

Solution: $(\mathrm{f} / \mathrm{g})(\mathrm{x})=\frac{2 x+3}{3-x}$
11) $(g-f)(x)$
$=g(x)-f(x)=(5 x+4)-\left(2 x^{2}-5 x-3\right)$
$=5 x+4-2 x^{2}+5 x+3=-2 x^{2}+10 x+7$
The function is defined for all values of x, so the domain is all real numbers.

Solution: $(g-f)(x)=-2 x^{2}+10 x+7$
15) $(f \circ g)(x)$
$=f(g(x))=f(5 x+4)$
$=2(5 x+4)^{2}-5(5 x+4)-3$
$=2(5 x+4)(5 x+4)-25 x-20-3$
$=2\left(25 x^{2}+20 x+20 x+16\right)-25 x-20-3$
$=50 x^{2}+40 x+40 x+32-25 x-20-3$
$=50 x^{2}+55 x+9$

The function is defined for all values of x, so the domain is all real numbers.

Solution: $(f \circ g)(x)=50 x^{2}+55 x+9$

Chapter 6: Exponential and Logarithmic Functions

Selected Solutions to Odd Problems

Section 6.1

19) $(\mathrm{h}+\mathrm{k})(3)$
$=h(3)+k(3)$
$=[2(3)+3]+(3-3)=9+0=9$
Solution: $(h+k)(3)=9$
20) $(h \circ k)(4)$
$=h(k(4))=h(3-4)=h(-1)$
$=2(-1)+3=-2+3=1$

Solution: $(h \circ k)(4)=1$
31) $\left(\frac{s}{t}\right)(3)$
$=\frac{s(3)}{t(3)}=\frac{2(3)^{2}-5(3)-3}{5 * 3+4}$
$=\frac{18-15-3}{15+4}=\frac{0}{19}=0$
Solution: $\left(\frac{s}{t}\right)(3)=0$
37) $(s \circ t)(-2)$
$=s(t(-2))=s(5(-2)+4)$
$=s(-6)=2(-6)^{2}-5(-6)-3$
$=72+30-3=99$

Solution: $(s \circ t)(-2)=99$
21) $(h / k)(5)$
$=\frac{h(5)}{k(5)}=\frac{2(5)+3}{3-5}=\frac{13}{-2}=-\frac{13}{2}$

Solution: $(\mathrm{h} / \mathrm{k})(5)=-\frac{13}{2}$
27) $(k \circ h)(3)$
$=k(h(3))=k(2 * 3+3)$
$=k(9)=3-9=-6$

Solution: $(k \circ h)(3)=-6$
35) $(s \circ t)(0)$
$=s(t(0))=s(5 * 0+4)=s(4)$
$=2(4)^{2}-5 * 4-3=32-20-3=9$

Solution: $(s \circ t)(0)=9$
41) $(\mathrm{fg})(0)$
$=f(0) * g(0)=1 *(-1)=-1$
To find $f(0)$ look at the graph.
This is asking for the y coordinate of the point that has 0 for its x coordinate $(f(0)=1)$

To find $g(0)$ look at the graph.
This is asking for the y coordinate of the point that has 0 for its x coordinate. $(g(0)=-1)$

Solution: $(\mathrm{fg})(0)=-1$

Chapter 6: Exponential and Logarithmic Functions

Selected Solutions to Odd Problems

Section 6.1

43) $(\mathrm{g} / \mathrm{f})(1)$
$=\frac{g(1)}{f(1)}=\frac{0}{3}=0$
To find $f(1)$ look at the graph.
This is asking for the y coordinate of the point that has 0 for its x coordinate. $(f(1)=3)$

To find $g(1)$ look at the graph.
This is asking for the y coordinate of the point that has 0 for its x coordinate. $(g(1)=0)$

Solution: $(g / f)(1)=0$
47) $(g \circ f)(-2)$

First write without composite symbol.
$=\mathrm{g}(\mathrm{f}(-2))^{* * * *}$

Then find $f(-2)$, which is the y coordinate of the point on the f graph with x of -2 .
$f(-2)=-3$
replace $f(-2)$ with 3 in $* * * *$ above.
$=g(-3)$

Now find $g(-3)$ which is the y coordinate of the point on the g graph with $\mathrm{x}=-3 . \mathrm{g}(-3)=8$

Solution: $(g \circ f)(-2)=8$

Section 6.2

\#5-12, Sketch a graph and determine whether each function is one to one (you may construct a table of values, use a graphing calculator, or use a technique you already have learned to construct your graph.)
5) $f(x)=2 x-5$
$f(x)=2 x-5$

Function is one-to-one
no horizontal line can be drawn to touch the graph in more than one place, the function is one-to-one.
7) $f(x)=x^{2}-3$

Function is not one-to-one

A horizontal line can be drawn to touch the graph in more than one place, the function not is one-toone.

Chapter 6: Exponential and Logarithmic Functions

Selected Solutions to Odd Problems

Section 6.2

9) $g(x)=x^{4}$

Solution: Function is not one-to-one

A horizontal line can be drawn to touch the graph in more than one place, the function not is one-toone.
13) $f=\{(0,1)(1,4)(2,4)(3,5)\}$

The function is not one-to-one because two different points have the same y-value.

Solution: Function is not one-to-one
11) $f(x)=x^{3}$

Solution: Function is one-to-one

No horizontal line can be drawn to touch the graph in more than one place, the function is one-to-one.
15) $h=\{(0,3)(5,1)(7,11)(9,-3)\}$

Function is one-to-one because all of the y values are different. Find inverse by switching the x and y's.

Solution: Function is one-to-one
$h^{-1}=\{(3,0)(1,5)(11,7)(-3,9)\}$

Chapter 6: Exponential and Logarithmic Functions

Selected Solutions to Odd Problems

Section 6.2

19) $f(x)=2 x-4$
first: replace function symbol with a y
$y=2 x-4$
second: switch x and y, this creates the inverse
$x=2 y-4$
third: solve for y
$x+4=2 y$
$\frac{x+4}{2}=y$
fourth: write with y on left side (if not already there)
$y=\frac{x+4}{2}$
fifth: replace the y with an inverse symbol

Solution: $f^{-1}(x)=\frac{x+4}{2}$
25) $m(x)=\sqrt[3]{x}$
first: replace function symbol with a y $y=\sqrt[3]{x}$
second: switch x and y , this creates the inverse $x=\sqrt[3]{y}$
third: solve for y
$x^{3}=(\sqrt[3]{y})^{3}$
$x^{3}=y$
fourth: write with y on left side (if not already there)
$y=x^{3}$
fifth: replace the y with an inverse symbol
Solution: $m^{-1}(x)=x^{3}$
21) $g(x)=\frac{x-2}{3}$
first: replace function symbol with a y
$y=\frac{x-2}{3}$
second: switch x and y, this creates the inverse
$x=\frac{y-2}{3}$
third: solve for y
$3 x=3 * \frac{y-2}{3}$
$3 x=y-2$
$3 x+2=y$
fourth: write with y on left side (if not already there)
$y=3 x+2$
fifth: replace the y with an inverse symbol
Solution: $g^{-1}(x)=3 x+2$
27) $f(x)=x^{3}+2$
first: replace function symbol with a y $y=x^{3}+2$
second: switch x and y, this creates the inverse
$x=y^{3}+2$
third: solve for y
$x-2=y^{3}$
$\sqrt[3]{x-2}=\sqrt[3]{y^{3}}$
$\sqrt[3]{x-2}=y$
fourth: write with y on left side (if not already there)
$y=\sqrt[3]{x-2}$
fifth: replace the y with an inverse symbol
Solution: $f^{-1}(x)=\sqrt[3]{x-2}$

Chapter 6: Exponential and Logarithmic Functions
Selected Solutions to Odd Problems

Section 6.3

13) $f(x)=3^{x}$

x	$f(x)$	computations
0	1	$f(0)=3^{0}=1$
1	3	$f(1)=3^{1}=3$
-1	$1 / 3$	$f(-1)=3^{-1}=1 / 3$
-2	$1 / 9$	$f(-2)=3^{-2}=1 / 3^{2}=1 / 9$

15) $h(x)=\left(\frac{1}{3}\right)^{x}$

x	$h(x)$	computations
0	1	$h(0)=\left(\frac{1}{3}\right)^{0}=1$
-1	$1 / 3$	$h(1)=\left(\frac{1}{3}\right)^{1}=\frac{1}{3}$
1	3	$h(-1)=\left(\frac{1}{3}\right)^{-1}=\left(\frac{3}{1}\right)^{1}=3$
-2	9	$h(-2)=\left(\frac{1}{3}\right)^{-2}=\left(\frac{3}{1}\right)^{2}=9$
2	$1 / 9$	$h(2)=\left(\frac{1}{3}\right)^{2}=\frac{1}{9}$
-3	27	$h(-3)=\left(\frac{1}{3}\right)^{-3}=\left(\frac{3}{1}\right)^{3}=27$

Chapter 6: Exponential and Logarithmic Functions

Selected Solutions to Odd Problems

Section 6.3

17) $f(x)=2^{x-3}$

x	$f(x)$	computations
3	1	$f(3)=2^{3-3}=2^{0}=1$
4	2	$f(4)=2^{4-3}=2^{1}=2$
2	$1 / 2$	$f(2)=2^{2-3}=2^{-1}=1 / 2$
5	4	$f(5)==^{5-3}=2^{2}=4$
1	$1 / 4$	$f(1)=2^{1-3}=2^{-2}=1 / 2^{2}=1 / 4$

x	$f(x)$	computations
-4	1	$f(-4)=2^{-4+4}=2^{0}=1$
-5	$1 / 2$	$f(-5)=2^{-5+4}=2^{-1}=1 / 2$
-3	2	$f(-3)=2^{-3+4}=2^{1}=2$
-6	$1 / 4$	$f(-6)=2^{-6+4}=2^{-2}=1 / 2^{2}=1 / 4$

23) The number of computers infected by the spread of a virus through email can be described by the exponential function $c(t)=4(1.02)^{t}$, where t is the number of minutes since the first infected e-mail was opened. Approximate the number of computers that will be infected after 6 hours (240 minutes). (round to the nearest computer)

I just need to plug in 240 for t in the equation. I will need to use my calculator to get this answer.
$c(240)=4(1.02)^{240}=464$

Solution: 464 computers

25) The charge remaining in a battery decreases as the battery discharges. The charge C (in coulombs) after t days is given by the formula $C(t)=0.0003(0.7)^{t}$. Find the charge after 5 days. (carry 6 decimal places in your answer)

I need to evaluate the function at $\mathrm{t}=5$. I will need my calculator to simplify.
$C(0)=0.0003(0.7)^{5}=0.00005$
Solution: 0.00005 coulombs

Chapter 6: Exponential and Logarithmic Functions

Selected Solutions to Odd Problems

Section 6.3

\#26-30: Use the compound interest formula $A=P\left(1+\frac{r}{n}\right)^{n t}$ to answer the following.
27) An initial deposit of $\$ 1,000$ earns 4% interest compounded twice per year. How much will be in the account after 5 years?
$\mathrm{P}=1,000$
$r=.04$
$\mathrm{n}=2$
$t=5$
Substitute these values in the formula. Then use my calculator to evaluate.
$1000\left(1+\frac{.04}{2}\right)^{2 * 5}=1218.99$
Solution: \$1218.99

Chapter 6: Exponential and Logarithmic Functions

Selected Solutions to Odd Problems

Section 6.4

1) $3^{2}=9$

The base of the exponential function (3) is the base or subscripted part of the logarithm.
Switch the 2 and the 9.

Solution: $\log _{3} 9=2$
7) $e^{y}=x$

The base of the exponential function (e) is the base or subscripted part of the logarithm.
Switch the y and the x.
Solution: $\log _{e} \mathbf{x}=\mathbf{y}$
13) $\log _{2} 64=6$

Write the problem without the log.
The 2 remains the base in the exponential function. Switch the 64 and 6.

Solution: $\mathbf{2}^{\mathbf{6}}=\mathbf{6 4}$
5) $3^{-1}=\frac{1}{3}$

The base of the exponential function (3) is the base or subscripted part of the logarithm.
Switch the -1 and the $1 / 3$.
Solution: $\quad \log _{3}(1 / 3)=-1$
11) $\log _{3} 81=4$

Write the problem without the log. The 3 remains the base in the exponential function. Switch the 81 and 4.

Solution: $3^{4}=\mathbf{8 1}$
17) $\log x=3$

Since no base is written the base is assumed to be 10. You can think of the problem like this:
$\log _{10} x=3$

Write the problem without the log. The 10 remains the base in the exponential function. Switch the x and 3 .

Solution: $1 \mathbf{1 0}^{\mathbf{3}}=\mathrm{x}$

Section 6.4

19) $\log _{2} 2$

This is asking the question $2^{?}=2$,
The answer must be 1 because: $2^{1}=2$

Solution: 1
27) $\log _{4} 64$

This is asking the question $4^{?}=64$, The answer must be 3 because: $4^{3}=64$

Solution: 3

33) $\log 100$

This is asking the question $10^{?}=100$,
The answer must be 2 because: $10^{2}=100$

Solution: 2
41) $\log _{4} 4^{5}$

This is asking the question $4^{?}=4^{5}$,
The answer must be 5 because: $4^{5}=4^{5}$
Solution: 5
23) $\log _{3} 1$

This is asking the question $3^{?}=1$,
The answer must be 0 because: $3^{0}=1$
Solution: 0
31) $\log 1$

Remember if no base is written the base is assumed to be a 10 . Think of the problem as:
$\log _{10} 1$
This is asking the question $10^{?}=1$, The answer must be 0 because: $10^{0}=1$

Solution: 0
37) $\log _{2} 2^{3}$

This is asking the question $2^{?}=2^{3}$, The answer must be 3 because: $2^{3}=2^{3}$

Solution: 3

Chapter 6: Exponential and Logarithmic Functions

Selected Solutions to Odd Problems

Section 6.4

49) $y=\log _{2} x$
$2^{y}=x$ (problem written in exponential form)

Domain ($0, \infty$)

x	y	computations
1	0	$(y=0) \quad 2^{0}=x$ $1=x$
$1 / 2$	-1	$(y=-1) \quad 2^{-1}=x$ $1 / 2=x$
2	1	$(y=1) \quad 2^{1}=x$ $2=x$
$1 / 4$	-2	$(y=-2) \quad 2^{-2}=x$ $1 / 4=x$
4	2	$(y=2) \quad 2^{2}=x$ $4=x$

53) $y=\log _{2}(x+4)$
$2^{y}=x+4$ (problem written in exponential form) Domain $(-4, \infty)$

x	y	computations
-3	0	$(y=0) 2^{0}=x+4$ $1=x+4$ $-3=x$
		(y=-1) $2^{-1}=x$ $1 / 2=x+4$ $.5=x+4$ $-3.5=x$
-3.5	-1	$(y=1) 2^{1}=x+4$ $2=x+4$ $-2=x$
-3.75	-2	$(y=-2) 2^{-2}=x+4$ $1 / 4=x+4$ $0.25=x+4$ $-3.75=x$
		$(y=2) 2^{2}=x+4$ $4=x+4$ $0=x$
0	2	

Chapter 6: Exponential and Logarithmic Functions

Selected Solutions to Odd Problems

Section 6.4

57) $y=\log _{1 / 2}(x+1)$
equation written in exponential form
$(1 / 2)^{y}=x+1$
Domain ($-1, \infty$)

x	Y	computations - done on calculator
0	1	$\mathrm{y}=\mathrm{e}^{0}$ $\mathrm{y}=1$
-1	.37	$\mathrm{y}=\mathrm{e}^{-1}$ $=.37$
1	2.72	$\mathrm{y}=\mathrm{e}^{1}$ $\mathrm{y}=2.72$
-2	.14	$\mathrm{y}=\mathrm{e}^{-2}$ $\mathrm{y}=.14$
2	7.39	$\mathrm{y}=\mathrm{e}^{2}$ $\mathrm{y}=7.39$

Chapter 6: Exponential and Logarithmic Functions

Selected Solutions to Odd Problems

Section 6.5

17) $y=e^{x-2}$

x	Y	computations - done on calculator
2	0	$y=e^{2-2}$ $y=e^{0}$ $y=1$
3	2.72	$y=e^{3-2}$ $y=e^{1}$ $y=2.72$
1	.37	$y=e^{1-2}$ $y=e^{-1}$ $y=0.37$
4	7.39	$y=e^{4-2}$ $y=e^{2}$ $y=7.39$
0	.14	$y=e^{0-2}$ $y=e^{-2}$ $y=0.14$

19) $y=\ln (x)$

Equation written in exponential form:
$e^{y}=x$
Domain ($0, \infty$)

x	y	computations- done on calculator
1	0	$(\mathrm{y}=0) \mathrm{e}^{0}=\mathrm{x}$ $1=\mathrm{x}$
2.72	1	$(\mathrm{y}=1) \mathrm{e}^{1}=\mathrm{x}$ $2.72=\mathrm{x}$
.37	-1	$(\mathrm{y}=-1) \mathrm{e}^{-1}=\mathrm{x}$ $0.37=\mathrm{x}$
7.39	2	$(\mathrm{y}=2) \mathrm{e}^{2}=\mathrm{x}$ $7.39=\mathrm{x}$
.14	-2	$(\mathrm{y}=-2) \mathrm{e}^{-2}=\mathrm{x}$ $0.14=\mathrm{x}$

Chapter 6: Exponential and Logarithmic Functions

Selected Solutions to Odd Problems

Section 6.5

23) $y=\ln (x+2)$

Equation written in exponential form:
$\mathrm{e}^{\mathrm{y}}=\mathrm{x}+2$
Domain $(-2, \infty)$

x	y	computations, done on calculator
-1	0	$(y=0) e^{0}=x+2$ $1=x+2$ $-1=x$
.72	1	$(y=1) e^{1}=x+2$ $2.72=x+2$ $x=.72$
-1.63	-1	$(y=-1) e^{-1}=x+2$. $.37=x+2$ $-1.63=x$
5.39	2	$(y=2) e^{2}=x+2$ $7.39=x+2$ $5.39=x$ $(y=-2) e^{-2}=x+2$ $0.14=x+2$ $-1.86=x$
-1.86	-2	(140

25) $y=\ln (3-x)$

Equation written in exponential form:
$e^{y}=3-x$
I will rewrite a bit more
$x=3-e^{y}$
Domain $(-\infty, 3)$

x	y	computations- done on calculator
2	0	$(y=0) x=3-e^{0}=2$
2.63	-1	$(y=-1) x=3-e^{-1}=2.63$
.28	1	$(y=1) x=3-e^{1}=3-2.72=.28$
2.86	-2	$(y=-2) x=3-e^{-2}=3-.14=2.86$
-4.39	2	$(y=2) x=3-e^{2}=3-7.39=-4.39$

Chapter 6: Exponential and Logarithmic Functions

Selected Solutions to Odd Problems

Section 6.5

29) An initial investment of $\$ 10,000$
earns 5.25\% interest compounded
continuously. What will the investment
be worth in 8 years?
$P=10000$
$r=.0525$
$t=8$
Substitute values in formula
Use a calculator to evaluate.
$\mathrm{A}=10000 \mathrm{e}^{8 * .0525}=15219.62$
Solution: \$15219.62

Section 6.6

1) $\log _{2} 16$
2) $\log _{8} 8^{5}$

This is asking the question $2^{?}=16$, the answer is 4 , because $2^{4}=16$

Solution: 4
9) $\ln (e)$

Think of this as $\log _{\mathrm{e}} \mathrm{e}$
This is asking the question $\mathrm{e}^{?}=\mathrm{e}$, the answer is 1 , because $\mathrm{e}^{1}=\mathrm{e}$

Solution: 1

This is asking the question $8^{?}=8^{5}$, the answer is 5 , because $8^{5}=8^{5}$

Solution: 5

11) $\log _{2} 64^{3}$

This is asking the question $2^{?}=64^{3}$
I will need to do a bit of algebra to solve this. I
know $2^{6}=64$. I can rewrite the problem.
$2^{?}=\left(2^{6}\right)^{3}$ ।
will clear the parenthesis by multiplying exponents
$2^{?}=2^{18}$
Now it should be obvious that 18 is the solution.
Solution: 18

Section 6.6

13) Which of these is a true statement?
a) If I replace with the values to the left:
b) If I replace with the values above:

Chapter 6: Exponential and Logarithmic Functions

Selected Solutions to Odd Problems

a) $\log _{2}(4 * 8)=\log _{2} 4 * \log _{2} 8$
b) $\log _{2}(4 * 8)=\log _{2} 4+\log _{2} 8$

To answer these questions I need to know what each part equals.
$\log _{2}(4 * 8)=\log _{2} 32=5$
$\log _{2} 4=2$
$\log _{2} 8=3$

Solution: a is false, b is true

15) Which of these is a true statement?
a) $\log _{2} \frac{16}{2}=\frac{\log _{2} 16}{\log _{2} 2}$
b) $\log _{2} \frac{16}{2}=\log _{2} 16-\log _{2} 2$

I need to know what each piece is equal to, before I can answer the question.
$\log _{2} \frac{16}{2}=\log _{2} 8=3$
$\log _{2} 16=4$
$\log _{2} 2=1$
Solution: a is false, b is true

Section 6.6

17) Which of these is a true statement?
a) $\log 100^{3}=(\log 100)^{3}$
b) $\log 100^{3}==3 \log 100$
a) I will replace the values to determine if this is true or not.
$\log 100^{3}=(\log 100)^{3}$
$\log _{2}(4 * 8)=\log _{2} 4+\log _{2} 8$
$5=2+3$
$5=5$ (this is true
a) If I replace with the values above:
$3=\frac{4}{1}$ (this is false)
b) If I replace with the values above:
$\log _{2} \frac{16}{2}=\log _{2} 16-\log _{2} 2$
$3=4-1$
$3=3$ (this is true)

$$
\log _{2} \frac{16}{2}=\frac{\log _{2} 16}{\log _{2} 2}
$$

This is false.
?

Chapter 6: Exponential and Logarithmic Functions

Selected Solutions to Odd Problems

I need to compute each piece before I can answer the question. You can use your calculator if you can't do these by hand yet.
$\log 100^{3}=6$
$\log 100=2$

Solution: \mathbf{a} is false, b is true

$6=(2)^{3}$
$6=8$ (this is false)
$6=3 * 2$
$6=6$ (this is true)
21) $\log _{5}\left(25 x^{2} y^{6}\right)$
$=\log _{5} 25+\log _{5} x^{2}+\log _{5} y^{6}$
$=2+2 \log _{5} \mathrm{x}+6 \log _{5} \mathrm{y}$
23) $\log _{2} \frac{x y^{3}}{z^{2}}$
$=\log _{2}\left(x y^{3}\right)-\log _{2} z^{2}$
$=\log _{2} x+\log _{2} y^{3}-\log _{2} z^{2}$
$=\log _{2} x+3 \log _{2} y-2 \log _{2} z$

Solution: $\log _{2} x+3 \log _{2} y-2 \log _{2} z$
25) $\log _{2} \frac{x y}{w^{2} z^{5}}$
$=\log _{2}(x y)-\log _{2}\left(w^{2} z^{5}\right)$
$=\log _{2} x+\log _{2} y-\left(\log _{2} w^{2}+\log _{2} z^{5}\right)$
$=\log _{2} x+\log _{2} y-2 \log _{2} w-5 \log _{2} z$
Solution: $\log _{2} x+\log _{2} y-2 \log _{2} w-5 \log _{2} z$
29) $\log _{2}\left(x^{2} \cdot \sqrt[3]{y}\right)$
$=\log _{2} x^{2}+\log _{2} \sqrt[3]{y}$
$=2 \log _{2} x+\log _{2} y^{1 / 3}$
$=2 \log _{2} x+\frac{1}{3} \log _{2} y$
Solution: $2 \log _{2} x+\frac{1}{3} \log _{2} y$

Section 6.6

33) $2 \log _{3} x+4 \log _{3} y+\log _{3} z$
$=\log _{3} x^{2}+\log _{3} y^{4}+\log _{3} z$
34) $5 \log _{2} x+3 \log _{2} y-\log _{2} z$
$=\log _{2} x^{5}+\log _{2} y^{3}-\log _{2} z$

Chapter 6: Exponential and Logarithmic Functions
Selected Solutions to Odd Problems
$=\log _{3} x^{3} y^{4} z$

$$
=\log _{2}\left(x^{5} y^{3}\right)-\log _{2} z
$$

Solution: $\log _{3} x^{3} y^{4} z$

$$
=\log _{2} \frac{x^{5} y^{3}}{z}
$$

Solution: $\log _{2} \frac{x^{5} y^{3}}{z}$
37) $4 \log x-2 \log y-3 \log z$
$=\log x^{4}-(2 \log y+3 \log z)$
$=\log x^{4}-\left(\log y^{2}+\log z^{3}\right)$
$=\log x^{4}-\log \left(y^{2} z^{3}\right)$
$=\log \frac{x^{4}}{y^{2} z^{3}}$
Solution: $\boldsymbol{\operatorname { l o g }} \frac{x^{4}}{y^{2} z^{3}}$

Chapter 6: Exponential and Logarithmic Functions

Selected Solutions to Odd Problems

Section 6.7

3) $2^{x+1}=32$
$2^{x+1}=2^{5}$
$x+1=5$
$\mathrm{x}=4$
This solution will check, but I am not showing the work.
Solution: $x=4$
4) $\left(\frac{1}{2}\right)^{x}=16$
$\frac{1}{2}=2^{-1}$ I need to use this fact to solve this problem without logarithms.
$\left(2^{-1}\right)^{x}=2^{4}$
$2^{-x}=2^{4}$
$-x=4$
$x=-4$
Solution: $x=-4$

$$
\text { Check } x=-4
$$

$\left(\frac{1}{2}\right)^{-4}=16$
$\left(\frac{2}{1}\right)^{4}=16$
$16=16$
Th e solution checks.
$x=-4$ is the only solution
7) $2^{4-x}=64$
$2^{4-x}=2^{6}$
$4-x=6$
$-x=6-4$
$-x=2$
$x=-2$

Solution: $x=\mathbf{- 2}$
Check $x=-2$
$2^{4-(-2)}=64$
$2^{4+2}=64$
$2^{6}=64$
$64=64$

The solution checks.
$x=-2$ is the only solution.
9) $32^{x}=2$
$\left(2^{5}\right)^{x}=2^{1}$
$2^{5 x}=2^{1}$
$5 x=1$
$x=1 / 5$

Solution: $x=1 / 5$

```
Check \(x=1 / 5\)
\(32^{1 / 5}=2\)
\(\sqrt[5]{32}=2\)
\(2=2\)
The solution checks.
\(x=1 / 5\) is the only solution.
```


Chapter 6: Exponential and Logarithmic Functions

Selected Solutions to Odd Problems

Section 6.7

13) $3^{x}=6$
take \log of both sides: $\log 3^{x}=\log 6$
make exponent coefficient: xlog3 $=\log 6$
divide: $\mathrm{x}=\frac{\log 6}{\log 3}$ or $\log _{3} 6$
(I will get a decimal approximation using my calculator)

Solution: $x=\log _{3} 6$
approx: 1.63

> Check $x=1.63$ (because I am checking a rounded answer, this might not check quite as nicely as the last few problems.
> $3^{1.63}=6$
> $5.9938=6$ (this isn't exactly $6=6$, but it is close enough)
15) $e^{x}=12$

I will take the In of both sides, because of the e in the problems.
take \ln of both sides: $\ln \left(\mathrm{e}^{\mathrm{x}}\right)=\ln (12)$
make exponent coefficient: $x \ln e=\ln (12)$
substitute $\ln (e)=1: x(1)=\ln (12)$
$x=\ln (12)$
$x=2.48$

Solution: $x=\ln (12)$
approx: 2.48

```
Check \(x=2.48\)
\(e^{2.48}=12\)
\(11.941=12\) (this is still close enough because I
am using a rounded answer)
```

19) $32 \mathrm{e}^{2 \mathrm{x}}=128$
first divide by $32: \frac{32 e^{2 x}}{32}=\frac{128}{32}$
$\mathrm{e}^{2 \mathrm{x}}=4$
I will take the \ln of both sides: $\ln \left(\mathrm{e}^{2 \mathrm{x}}\right)=\ln 4$
make exponent coefficient: $2 x \ln ==\ln 4$
replace Ine with 1: $2 x=\ln 4$
divide: $x=\frac{\ln 4}{2}$
(This solution will check, I am not going to show how this solution checks)

Solution: $x=\frac{\ln (4)}{2}$
approx: . 69

Chapter 6: Exponential and Logarithmic Functions

Selected Solutions to Odd Problems

Section 6.7

25) $\log _{3} x=2$
rewrite in exponential form:
$3^{2}=x$
$9=x$
Solution: $x=9$
```
Check x = 9
\(\log _{3} 9=2\) (you can evaluate the logarithm on your calculator, if you can't do it in your head)
\(2=2\)
```

The solution checks and $x=9$ is the only solution.
27) $\ln x=1$
rewrite with $\ln =\log _{\text {e }}$
$\log _{e} x=1$
write without log
$\mathrm{e}^{1}=\mathrm{x}$

Solution: $x=e$ (approx 2.72)

```
check x =e
In e=1
1=1
The solution checks.
\(x=e\) is the only solution.
```

35) $\log _{2}(x-1)=3$
write without log
$2^{3}=x-1$
$8=x-1$
$9=x$

Solution: $x=9$

```
Check \(x=9\)
\(\log _{2}(9-1)=3\)
\(\log _{2} 8=3\)
(again, use your calculator if you can't do the log
in your head)
\(3=3\)
The solution checks.
\(x=3\) is the only solution.
```


Chapter 6: Exponential and Logarithmic Functions

Selected Solutions to Odd Problems

Section 6.7

37) $\log _{2}(2 x)=5$
write without the logarithm
$2^{5}=2 x$
$32=2 x$
$16=x$
(This solution checks, but I will not include the checking here.)

Solution: $x=16$
39) $\log (x+1)=\log (3 x-2)$
you can solve be dropping the logs and equating the arguments.
$x+1=3 x-2$
$-2 x=-3$
$=x=\frac{-3}{-2}=\frac{3}{2}$
Solution: $x=3 / 2$
Check $x=3 / 2$
$\log \left(\frac{3}{2}+1\right)=\log \left(3 * \frac{3}{2}-2\right)$
$\log \left(\frac{3}{2}+\frac{2}{2}\right)=\log \left(\frac{9}{2}-\frac{4}{2}\right)$
$\log \left(\frac{5}{2}\right)=\log \left(\frac{5}{2}\right)$
The solution checks.
$x=3 / 2$ is the only solution.

Chapter 6: Exponential and Logarithmic Functions

Selected Solutions to Odd Problems

Section 6.7

43) $\log _{2} x-\log _{2}(x+6)=-2$
write as a single log $\log _{2} \frac{x}{x+6}=-2$
write without the log, in exponential form $2^{-2}=\frac{x}{x+6}$
replace 2^{-2} with $1 / 4: \quad \frac{1}{4}=\frac{x}{x+6}$
cross multiply $4 \mathrm{x}=\mathrm{x}+6$
$3 x=6$
$x=2$

Solution: $x=2$

> Check $x=2$
> $\log _{2} 2-\log _{2}(2+6)=-2$
> $1-\log _{2} 8=-2$
> $1-3=-2$
> $-2=-2$

The solution checks.
$x=-2$ is the only solution.
45) $\log _{2} x-\log _{2}(x-6)=2$
write a single log: $\log _{2} \frac{x}{x-6}=2$
write in exponential form: $2^{2}=\frac{x}{x-6}$
$4=\frac{x}{x-6}$
clear fractions: $4(x-6)=\frac{x}{x-6}(x-6)$
$4 x-24=x$
$3 x=24$
$x=8$

Solution: $x=8$

$$
\begin{aligned}
& \text { Check } x=8 \\
& \log _{2} 8-\log _{2}(8-6)=2 \\
& 3-\log _{2} 2=2 \\
& 3-1=2 \\
& 2=2
\end{aligned}
$$

The solution checks.
$x=8$ is the only solution

Chapter 6: Exponential and Logarithmic Functions

Selected Solutions to Odd Problems

Section 6.7

47) $\log _{2}(x+6)-\log _{2}(3 x+2)=-1$
write as a single log: $\log _{2} \frac{x+6}{3 x+2}=-1$
write in exponential form: $2^{-1}=\frac{x+6}{3 x+2}$
replace 2^{-1} with $1 / 2^{\prime \prime}: \frac{1}{2}=\frac{x+6}{3 x+2}$
cross multiply: $1(3 x+2)=2(x+6)$

Solve: $3 x+2=2 x+12$
$x=10$
This solution will check. I am not including the work.
Solution: $\mathrm{x}=\mathbf{1 0}$
51) $\log _{3}(x+6)+\log _{3}(3 x)=4$
write as a single log: $\log _{3}(x+6)(3 x)=4$
simplify: $\log _{3}\left(3 x^{2}+18 x\right)=4$
write in exponential form: $3^{4}=3 x^{2}+18 x$
$81=3 x^{2}+18 x$
divide by 3: $\frac{81}{3}=\frac{3 x^{2}}{3}+\frac{18 x}{3}$
$27=x^{2}+6 x$
$0=x^{2}+6 x-27$
$0=(x+9)(x-3)$
$x+9=0$ or $x-3=0$
$x=-9$, or $x=3$
Solution: $x=3$
$x=-9$ is extraneous

Check $\mathrm{x}=3$	
$\log _{3}(3+6)+\log _{3}(3 * 3)=$ 4	Check $\mathrm{x}=-9$ $\log _{3}(-9+6)+\log _{3}(3 *(-9))$ $=4$
$\log _{3} 9+\log _{3} 9=4$	
$2+2=4$	
The solution checks. $x=3$ is the only solution.	$\log _{3}(-3)+\log _{3}(-27)=4$ Each of these logs is a non-real number.
The solution does not check	
$x=-9$ is extraneous	

Chapter 6: Exponential and Logarithmic Functions

Selected Solutions to Odd Problems

Section 6.7

Use the formula: $P=P_{0} e^{k t}$, where P_{0} is the initial population at $t=0$, and k is the rate of growth.
57) The bacterial in a laboratory culture increased from an initial population of 500 to 1,500 in 3 hours. How long will it take the population to reach 10,000? (hint first use the 500 to 1,500 in 3 hours and the formula above to solve for k, then use the 10,000 to answer the question.) (round t the nearest hour)

Use the first group of numbers and the formula to solve for k.
$P=1500 \quad P_{0}=500 \quad t=3$
Substitute values into equation: $\quad 1500=500 e^{k^{* 3}}$
(divide by 500) $3=e^{3 k}$
(take the \ln of both sides) $\ln (3)=\ln \left(e^{3 k}\right)$
(make the exponent a coefficient) $\ln (3)=$ $3 k \ln (\mathrm{e})$
(substitute $\operatorname{lne}=1$) $\quad \ln (3)=3 \mathrm{k}$
divide by $3 \quad \frac{\ln (3)}{3}=k$

Now use the next bit of information to answer the question.
$P=10000$
$\mathrm{P}_{0}=500$
$\mathrm{k}=\frac{\ln (3)}{3}$
continued in right column
57) continued:
put the values in the formula $10000=500 e^{\ln 3 / 3 t}$
(divide by 500$) \quad 20=e^{\ln 3 / 3 t}$
(take the \ln of both sides) $\ln (20)=\ln e^{\ln 3 / 3 t}$
(make exponent a coefficient) $\ln (20)=\frac{\ln 3}{3} t(\ln e)$
(replace Ine with 1) $\ln (20)=\frac{\ln (3)}{3} t$
(multiply by $\frac{3}{\ln (3)}$) $\quad \frac{3}{\ln (3)} \ln (20)=\frac{3}{\ln (3)} * \frac{\ln (3)}{3} t$
(use your calculator) $\frac{3}{\ln (3)} \ln (20)=t$
$8.1805=\mathrm{t}$

Solution: About 8 hours

Chapter 6: Exponential and Logarithmic Functions

Selected Solutions to Odd Problems

Section 6.7

Use the continuous compound interest formula: $A=P e^{r t}$, where P is the initial investment, r the annual interest rate, and t the number of years to solve the following.
61) How long will it take an initial investment of \$1,000 to double if it is expected to earn 6\% interest compounded continuously? (round to 1 decimal place)
find values for the formula
$P=1,000$
$A=2,000$ (goal is to double the initial investment.
$r=.06$

Substitute these values into the formula. $2000=1000 e^{.06 t}$
(divide by 1000) $2=e^{.06 t}$
(take \ln of both sides) $\ln (2)=\ln \left(e^{.06 t}\right)$
(make exponent coefficient) $\ln (2)=(.06 t)$ Ine
(lne = 1) $\ln (2)=.06 t$
divide: $\frac{\ln (2)}{.06}=t$
(use calculator)
$11.6=\mathrm{t}$

Solution: about 11.6 years
63) How long will it take an initial investment of $\$ 10,000$ to grow to $\$ 15,000$ if it is expected to earn 4% interest compounded continuously? (round to 1 decimal place)
find values for the formula:
$A=15000$
$\mathrm{P}=10000$
$r=.04$
substitute into formula
$15000=10000 \mathrm{e}^{.04 \mathrm{t}}$
(divide by 10000) $1.5=\mathrm{e}^{.04 \mathrm{t}}$
(take \ln of each side) $\ln (1.5)=\ln \left(e^{.04 t}\right)$
(make exponent a coefficient)
$\ln (1.5)=.04 t \ln (\mathrm{e})$
$(\ln (e)=1) \ln (1.5)=.04 t$
(divide) $\frac{\ln (1.5)}{.04}=t$
(use calculator)
t = 10.1
Solution: about 10.1 years

