1) M varies inversely as the square root of n. M is 4 when n is 25 . Find M when n is 16 .
2) M is some number divided by the square root of n.

$$
M=\frac{k}{\sqrt{n}}
$$

2)

(3) $\Delta \lambda=\frac{20}{\sqrt{16}}=\frac{20}{4}$

2) Y varies jointly as the cube of x and the square of $z . ~ Y$ is 144 when x is 2 and z is 3 . Find Y when x is 3 and z is 2 .

1) Y is some number times the cube of x and the square of z.

$$
Y=k x^{3} z^{2}
$$

2) $144=k(2)^{3}(3)^{2}$

$$
144=k(8)(9)
$$

(3) $Y=2(3)^{3}(2)^{2}$
$\frac{144}{72}=\frac{72 k}{72}$

$$
z=k
$$

3) Suppose that the demand (D) for candy at a movie theater is inversely related to the square root of the price (p). When the price of candy is $\$ 4.00$ per bag, the theater sells 150 bags of the candy. Determine the number of bags of candy that will be sold if the price is raised to $\$ 9.00$ per bag.
4) D is inversely related to the square root of p
$D=\frac{k}{\sqrt{p}}$
(2) $150=\frac{k}{\sqrt{4}}$

(3) $D=\frac{300}{\sqrt{9}}=\frac{300}{3}=100$

100 bags of candy
4) The distance (D) it takes a car to stop is directly proportional to the square of the speed (s) it is moving. A car traveling 10 miles per hour can stop in 15 feet. How long will it take a car traveling 40 miles per hour to stop?

1) D is directly proportional to the square of s.

$$
\begin{aligned}
& D=k s^{2} \\
& \text { 2) } \begin{aligned}
15 & =k(10)^{2} \\
\frac{15}{100} & =\frac{100 K}{100}
\end{aligned}
\end{aligned}
$$

$0.15=k$

$$
\text { 3) } \begin{aligned}
D & =0.15(40) \\
D & =240
\end{aligned}
$$

240 feet to stop
\#5 - 6: Use Algebra to find the x and y-intercepts.
5) $2 x-8 y=32$

$$
\begin{aligned}
x: i n t e c e e f t l(l e y & =0) \\
2 x-8(0) & =32 \\
\frac{2 x}{2} & =\frac{32}{2} \\
x & =16
\end{aligned}
$$

y-intercept (let $x=0$)

9) $y=x^{2}+4 x-12$
x-intercept (let $y=0$)

$$
\begin{aligned}
& x^{2}+4 x-12=0 \\
& (x+6)(x-2)=0 \\
& x+6=0 \quad x-2=0 \\
& \frac{-6-6}{x=-6} \quad \frac{+2+2}{x=2}
\end{aligned}
$$

y-intercept (let $x=0$)

$$
\begin{gathered}
y=(0)^{2}+4(0)-12 \\
y=-12 \\
x \rightarrow \operatorname{Int}(-6,0)(2,0) \\
y \text {-Int }(0,-12)
\end{gathered}
$$

\#7 - 9: draw a complete graph so that it has the indicated symmetry. Make sure to show each new point on your graph.
7) x-axis

Change y-coordinate of each point that was given.

8) y-axis

Change x-coordinate of each point that was given.

9) origin

Change both the x-coordinate and y-coordinate of each point that was given.

10) Sketch the graph of a line passing through the given point with the indicated slope. Label the given point and one additional point on your graph.
point $(6,-2)$ slope $=\frac{2}{3}$
Plot point (6, -2) go up 2 then right 3, at least one time

11) Find the slope of the line that passes through the two points. first point $(-3,5)$ second point $(5,9)$

12) $y=\frac{-4}{3} x+7$
a) Find the slope of the given line

$$
n=-\frac{4}{3}
$$

b) Find the slope of all lines parallel to the given line
(all lines parallel to the given line have the same slope)

$$
m=-\frac{4}{3}
$$

c) Find the slope of all lines perpendicular to the given line.
(all lines perpendicular to the given line have slopes that are negative reciprocals)

$$
n=\frac{3}{4}
$$

13) Use the method of your choice (point slope form or slope intercept form) to find the equation of a line with slope m, passing through the point (x, y). Write your answer in slope-intercept form.

$$
\begin{array}{r}
m=6 \text { point }(8-4) \\
y-(-4)=6(x-8) \\
y+4=6 x-48 \\
-4
\end{array}
$$

14) Use the method of your choice (point slope form or slope intercept form) to find the equation of a line passing through the
points $(7,3)$ and $(5,13)$. Write your answer in slope-intercept form

$$
\begin{gathered}
m=\frac{13-3}{5-7}=\frac{10}{-2}=-5 \\
y-3=-5(x-7) \\
y-3=-5 x+35 \\
y=3 \\
y=-5 x+38
\end{gathered}
$$

15) Find the equation of the vertical line passing through the point (2, -6).
(vertical lines only have x's, no y's)

16) Find the equation of the horizontal line passing through the point (2,-6).
(horizontal lines only have y's, no x's)

17) Write the standard form of the equation of the circle with the given radius (r) and center $(h, k): \quad r=3 \quad(h, k)=(2,-1)$

$$
\begin{aligned}
& \begin{array}{l}
(x-h)^{2}+(y-k)^{2}=r^{2} \\
h=2 \quad k=-1 r=3 \\
\quad(x-2)^{2}+(y-(-1))^{2}=3^{2}
\end{array}
\end{aligned}
$$

18) Find the standard form of the equation of each circle.

Center $(9,1)$ contains the point $(5,4)$
Plug the numbers into the formula, and solve for r.

$$
\begin{aligned}
& (x-h)^{2}+\left(y-1 b^{2}=r^{2}\right. \\
& h=9 \quad k=1 \\
& (x-9)^{2}+(y-1)^{2}=r^{2} \\
& x=5 \quad y=4 \\
& (5-9)^{2}+(y-1)^{2}=r^{2} \\
& (-4)^{2}+(3)^{2}=r^{2} \\
& 6+9=1(x-9)^{2}+(y-1)^{2}=5^{2} \\
& 65=r^{2} \\
& s=r
\end{aligned}
$$

19) $x^{2}+y^{2}-6 x+10 y=2$
a) Rewrite so that the equation is written in the standard form of a circle.
b) Identify the center of the circle
c) Identify the radius of the circle
d) Sketch a graph of the circle.
a)

$$
\begin{aligned}
& x^{2}-6 x+C_{1}+y^{2}+10 y+C_{2}=2+C_{1}+C_{2} \\
& C_{1}=\left(-\frac{6}{2}\right)^{2} \\
& C_{2}=\left(\frac{10}{2}\right)^{2} \\
& C_{1}=(-3)^{2} \\
& c_{2}=(5)^{2} \\
& c_{1}=9 \\
& c_{2}=25 \\
& x^{2}-6 x+9+y^{2}+10 y+25 \\
& =2+9+25 \\
& \begin{array}{l}
(x-3)^{2}+(y+5)^{2}=36 \\
\frac{(x-3)^{2}+(y-(-5))^{2}=6^{2}}{19 a} \\
(9 b)(3,-5)
\end{array} \\
& (9 c) C=6
\end{aligned}
$$

19d) plot $(3,-5)$

$$
4 \downarrow \leftrightarrow 6
$$

