Chapter 5 Practice Test

1) $f(x)=(x-4)^{2}(2 x+6)$
a) List each x-intercept (zero) and its multiplicity (round to 2 decimal places when needed)
$(4,0)$ mulitplicity 2 - even $(-3,0)$ multiplicity 1 - odd
b) Determine whether the graph crosses or touches the x-axis at each x-intercept
touches $(4,0)$ crosses at $(-3,0)$
c) Determine the maximum number of turning points on the graph max 2 turning points
d) Sketch a graph and approximate the turning points, also label the x-intercepts (see graph)
e) Describe the end behavior (find the power function that the graph resembles for large values of $|x|$ $f(x)=2 x^{3}$
f) State the intervals where the function is increasing and decreasing

$$
(-\infty)
$$

a) $(x-4)^{2}=0 \quad 2 x+6=0$

$$
x=4
$$

$2 x=-6$

$$
(4,0)
$$

$x=-3$ $\max 3-1=2$ Turing point $\underset{\text { Mullen }}{ }$ $(-3,0)$ multI
b) Touches

ODD

2) Form a polynomial function of lowest degree with whose x-intercepts are given, that passes through the given point.
x-intercepts: $(2,0),(-5,0)$ multiplicity 2 ; point $(3,128)$

$$
\begin{gathered}
f(x)=a(x-2)(x+5)^{2} \\
128=a(3-2)(3+5)^{2} \\
128=a(1)(64) \\
\frac{128}{64}=\frac{64 a}{64}
\end{gathered}
$$

3) $f(x)=6 x^{3}-29 x^{2}-17 x+60$
a) use your graphing calculator, or the rational root theorem to find a x-intercept of the polynomial $(x=5)$
b) use synthetic division to completely factor the polynomial $f(x)=(2 x+3)(3 x-4)(x-5)$
c) Use your answer to part a to solve $\mathrm{f}(\mathrm{x})=0 \quad x=5, \frac{-3}{2}, \frac{4}{3}$
b)

5 \begin{tabular}{c}
6 \\
\hline-29 \\
30

6 \& -17 \& 60 \\
\hline 60 \& 1 \& -12
\end{tabular}

$$
f(x)=(x-5)\left(6 x^{2}+x-12\right)
$$

$$
f(x)=(x-5)(3 x-4)(x+3)
$$

$$
\left\{\begin{array}{l}
\text { Factor } 6 x^{2}+x-12 \\
\left.=\left(6 x^{2}-8 x\right)+(9 x-12)\right] \\
=2 x(3 x-4)+3(3 x-4)) \\
=(3 x-4)(2 x+3)
\end{array}\right.
$$

C)

$$
\begin{array}{lr}
f(x)=0 \\
(x-5)(3 x-4)(2 x+3)=0 \\
x-5=0 \quad 3 x-4=0 \quad 2 x+3=0 \\
x=5 & 3 x=4 \quad 2 x=-3 \\
& x=\frac{4}{3} \quad x=-3 / 2 \\
& \\
& x=5,4 / 3,-3 / 2
\end{array}
$$

degree 2; zeros 5 i

$$
\begin{gathered}
x=5 i \quad x=-5 i=0 \\
x-5 i=0 \quad x+5 i=0 \\
f(x)=(x-5 i)(x+5 i) \\
f(x)=x^{2}+5 x i-5 \times i-25 i^{2}-2(-1) \\
f(x)=x^{2}+25
\end{gathered}
$$

5) $f(x)=\frac{6 x-12}{x+1}$

For each problem find the following:
a) the domain of $f(x)$ written in interval notation $(-\infty,-1) \cup(-1, \infty)$
b) the equation of the vertical asymptote (write none if there is no vertical asymptote) $x=-1$
c) the equation of the horizontal asymptote (write none if there is no horizontal asymptote) $y=6$
d) x - intercept(s) if any $(2,0)$
e) y-intercept(s) if any $(0,-12)$ (you do not need to graph the function)

6) $f(x)=\frac{x^{2}+2 x-15}{x-1}$

For each problem find the following:
a) the domain of $f(x)$ written in interval notation $(-\infty, 1) \cup(1, \infty)$
b) the equation of the vertical asymptote (write none if there is no vertical asymptote) $x=1$
c) the equation of the slant asymptote (write none if there is no slant asymptote) $y=x+3$
d) x - intercept (s) if any $(-5,0)(3,0)$
e) y-intercep ts) if any $(0,15)$
(you do not need to graph the function)
(a) $x-1=0$

