Grima MAT 151

Chapter 6 Practice Test with hypothetical point values

1) $f(x)=2 x-3$ and $g(x)=4 x+7 \quad$ Find $(g \circ f)(x) \quad$ (3 points)
2) $f(x)=x^{3}-6$ Find the following: (4 points each part, 8 total points)
a) $f^{-1}(x)$
b) $\left(f \circ f^{-1}\right)(x)$
3) $f(x)=e^{x} \quad$ Find the following: (3 points each, 6 total points)
a) $f(x-2)+3$
b) Describe the transformation of the graph in part "a" compared to the graph of $f(x)$.
4) $f(x)=\log _{2}(x)$ (3 points each, 9 total points)

Find the following:
a) $f(x+5)-3$
b) Describe the transformation of the graph in part "a" compared to the graph of $f(x)$.
c) State the domain of the function created in part a.
5) Solve $3^{2 x-8}=81$ (5 points)
6) Solve $\left(\frac{1}{2}\right)^{x-3}=64 \quad(5$ points)
7) Solve $3^{2 x-1} \times 3^{x+3}=3^{14}$ (5 points)
8) Write the expression as a single logarithm $5 \log _{2} x-6 \log _{2} y$ (5 points)
9) Expand into sums and differences of logs (express powers as coefficients). (5 points each)
a) $\log \frac{x^{3}}{w^{2}}$
b) $\log _{5}\left(x^{3} w^{2}\right)$
10) Use logarithms to solve $5^{x}=20$ (5 points)
11) Use logarithms to solve $6^{x-1}=12$ (5 points)
12) Write in exponential form, then solve $\log _{4}(x+1)=2$ (5 points)
13) First rewrite as single logarithm Second write in exponential form Third Solve
Be sure to check your answer (8 points)
$\log _{3}(x+1)-\log _{3}(x-5)=1$
14) First rewrite as single logarithm

Second write in exponential form, Third Solve
Be sure to check your answer (9 points)
$\log _{2}(x+1)+\log _{2}(x-5)=4$
15) Solve $\ln (x)=1$ (write your answer with an " e " and not a decimal) (6 points)
16) Solve $\log _{5}(x)=2$ (6 points)

