Chapter 5 Practice Test (Complete all problems)
\#1-4: Find the following antiderivatives, be sure to include the plus " C " in your answer.

1) $\int 8 x^{3} d x$
$1^{\text {st: }} \int a f(x) d x=a \int f(x) d x$

2 nd: Power Rule: $\int x^{n} d x=\frac{1}{n+1} x^{n+1}+C$ provided $\bigcap_{\neq-1}$

Answer: $2 x^{4}+C$
2) $\int\left(8 x^{3}-6 x^{2}+5\right) d x$

$2^{\text {nd }: ~} \int a f(x) d x=a \int f(x) d x$

$$
=7 x^{4}-2 x^{3}+5 \times+
$$

$3^{\text {rd }}$:
Power Rule: $\int x^{n} d x=\frac{1}{n+1} x^{n+1}+C$ provided $n^{n} \neq-1$

Integral of a constant Rule: $\int a d x=a x+C$ (a is any real number)
answer: $2 x^{4}-2 x^{3}+5 x+C$
3) $\int \frac{4}{x^{3}} d x$
$1^{\text {st. }}$ Rewrite with negative exponent

$4^{\text {th }}$: rewrite with positive exponent
answe: $-\frac{2}{x^{2}}+C$

4) $\int \frac{7}{x} d x$
$1^{\text {st: }}$: Rewrite with -1 exponent
$2^{\text {nd }}: \int a f(x) d x=a \int f(x) d x$

3 rd: "ln" Rule: $\left\{\begin{array}{c}\int x^{-1} d x=\ln |x|+C \\ \int \frac{1}{x} d x=\ln |x|+C\end{array}\right.$

answer $7 \ln |x|+C$
\#5-10: Use u-substitution to evaluate the indefinite integrals.
5) $\int 2 x\left(x^{2}+5\right)^{2} d x$

$$
=\int\left(x^{2}+5\right)^{2} 2 x d x
$$

Rewrite the problem so that the parenthesis is first:

$$
\operatorname{ler} v=x^{2}+5 x
$$

Next: let $u=$ inside of the parenthesis

Rewrite the problem so that the "parenthesis is changed to an " u "

$$
v=x^{2}+5
$$

Next find $\frac{d u}{d x}$

Multiply by $d x$ to clear the fraction.

Next replace to make problem only have u's

Next integrate: use Power Rule: $\int x^{n} d x=\frac{1}{n+1} x^{n+1}+C$ provided $\bigcap_{\neq-1}^{n}$

Last change u back to get the answer

$$
=\frac{1}{3}\left(x^{2}+5\right)^{3}+C
$$

answer: $\frac{1}{3}\left(x^{2}+5\right)^{3}+C$
6) $\int 15 x^{2} e^{5 x^{3}} d x$

Rewrite the problem so that the "e" is written first:

Next: let $u=$ exponent of the e

Rewrite the problem so that the exponent is changed to an " u "

Next find $\frac{d u}{d x}$

Multiply by $d x$ to clear the fraction.

Next replace to make problem only have u's

Next integrate: " $e^{\text {" Rule } \int} e^{x} d x=e^{x}+C$

Last change u back to get the answer

answer: $e^{5 x^{3}}+C$
7) $\int 6 x\left(x^{2}+5\right)^{2} d x$ $=\int\left(x^{2}+5\right)^{2} 6 x d x$
Rewrite the problem so that the parenthesis with the exponent is first:

Next: let $u=$ inside of the parenthesis

Rewrite the problem so that the "parenthesis with the exponent is changed to an " u "

$$
v=x^{2}+5
$$

Next find $\frac{d u}{d x}$

This is not good enough. Multiply to make a perfect match

Next replace to make problem only have u's

Next integrate: Power Rule: $\int x^{n} d x=\frac{1}{n+1} x^{n+1}+C$ provided $\bigcap_{n}^{h} \neq-1$

answer $\left(x^{2}+5\right)^{3}+C$

8) $\int 6 x e^{x^{2}} d x$

Rewrite the problem so that the "e" is written first:

Next: let $u=$ exponent of the e

Rewrite the problem so that the exponent is changed to an " u "

Next find $\frac{d u}{d x}$

This is not good enough. Multiply to make a perfect matgh.

$$
3 A v=6 x x x
$$

Next replace to make problem only have u's

Next integrate: " e " Rule $\int e^{x} d x=e^{x}+C$

Last change u back to get the answer

answer $3 e^{x^{2}}+C$
9) $\int \frac{4}{4 x+1} d x$

Rewrite so that the problem is not a fraction, and has a parenthesis with a -1 exponent

Rewrite the problem so that the parenthesis with the exponent is first:

$$
\text { eT } v=4 x+1
$$

Next: let $u=$ inside of the parenthesis

Rewrite the problem so that the "parenthesis with the exponent is changed to an " u "

$$
v=4 x+1
$$

Next find $\frac{d u}{d x}$

Multiply by $d x$ to clear the fraction.

$$
d v=4 d x
$$

Next replace to make problem only have u's

$$
=\ln |u|+c
$$

Next integrate: "ln" Rule: $\left\{\begin{array}{c}\int x^{-1} d x=\ln |x|+C \\ \int \frac{1}{x} d x=\ln |x|+C\end{array}\right.$

$$
=\ln |4 x+1|+C
$$

Last change u back to get the answer
answer $\ln |4 x+1|+C$
10) $\int \frac{9}{3 x+7} d x$

Rewrite so that the problem is not a fraction, and has a parenthesis with a -1 exponent

$$
\int(3 x+7)^{-19} \cdot d x
$$

Rewrite the problem so that the parenthesis with the exponent is first:

$$
\text { let } v=3 x+1
$$

Next: let $u=$ inside of the parenthesis

Next find $\frac{d u}{d x}$

This is not good enough. Multiply to make a perfect match.

Next replace to make problem only have u's

Next integrate: "ln" Rule: $\left\{\begin{array}{c}\int x^{-1} d x=\ln |x|+C \\ \int \frac{1}{x} d x=\ln |x|+C\end{array}\right.$

Last change u back to get the answer

answer $3 \ln |3 x+7|+C$
11) Follow the instructions and create rectangles on the provided graph, or one that you create (using right endpoints) to estimate the area between the curve and the x -axis.
$f(x)=x^{2}+3$; from $\mathrm{a}=0$ to $\mathrm{b}=3$ using 3 rectangles

11a) Determine the width of each rectangle that will be used to estimate the area.
$\begin{array}{lll}\text { (Each rectangle will have a width; } \frac{b-a}{n} \text {) } & 3-0 & 3 \\ \text { width }=1\end{array}$
11b) Increment by the interval width and draw rectangles on the graph that is provided. (next page)

Rectangle	Starting and ending x-values
1	$(0,1)$
2	$(1,2)$
3	$(2,3)$

11c) Find the area of each rectangle. (Let the height of the rectangle be the function value at the right endpoint of the rectangle.) (areas are 4, 7, and 12)

Rectangle	Starting and ending x- values	Length (height) $f(x)=x^{2}$	Width	Area
1	$(0,1)$	$f(1)=1^{2}+3=4$	$1-0=1$	$A=4 * 1=4$
2	$(1,2)$	$f(2)=2^{2}+3=7$	$2-1=1$	$A=7 * 1=7$
3	$(2,3)$	$f(3)=3^{2}+3=12$	$3-2=1$	$A=12 * 1=12$

11d) Add the individual areas to get an estimate of the area under the curve (23)

$$
4+7+12=23
$$

\#12-15: Use the Fundamental Theorem of Calculus to evaluate the definite integral.
12) $\int_{1}^{4}(2 x-4) d x$
$1^{\text {st: }}$

$\int(f(x)-g(x)) d x=\int f(x) d x-\int g(x) d x$
$2^{\text {nd }}: \int a f(x) d x=a \int f(x) d x$
$3^{\text {rd }}$:

4)

Power Rule: $\int x^{n} d x=\frac{1}{n+1} x^{n+1}+C$ provided $h_{\neq-1}$

Integral of a constant Rule: $\int a d x=a x+C$ (a is any real number)
an $=0-(-3)$
$5^{\text {th }}$ subtract the results to get the answer
answer 3
13) $\int_{0}^{3}(2 x)\left(x^{2}+1\right)^{2} d x$

Rewrite the problem so that the parenthesis is first:

Next: let $u=$ inside of the parenthesis

Rewrite the problem so that the "parenthesis is changed to an " u "

Next find $\frac{d u}{d x}$

Multiply by $d x$ to clear the fraction. $\quad d v=2 x d x$

Not good enough, multiply to make a perfect match

Next replace to make problem only have u's

Next integrate: use Power Rule: $\int x^{n} d x=\frac{1}{n+1} x^{n+1}+C$ provided $n_{\neq-1}$
畐

answer: 333

answer: 2
15) $\int_{0}^{3} 4(2 x-1)^{2} d x$

Rewrite the problem so that the parenthesis is first: $\quad e \mathrm{P}$

Next: let $u=$ inside of the parenthesis

Rewrite the problem so that the "parenthesis is changed to an " u "

Next find $\frac{d u}{d x}$

Multiply by $d x$ to clear the fraction. $2 \mathrm{dv}=2.2 \mathrm{dx}$
Not good enough, multiply to make a perfect match

Next replace to make problem only have u's

Last change u back to compute the integral
answer 84

$$
=2 \cdot \frac{1}{3} v^{3}
$$

Evaluate the integral at then $\left.\quad \frac{2}{3}(2(3)-1)^{3}=\frac{250}{3}=\frac{2}{3}(2 x-1)^{3}\right]_{0}^{1}$
subtract the results to get the answer $\frac{2}{3}(2(0)-1)^{3}=-\frac{2}{3}$

$$
\begin{aligned}
& =\frac{250}{3}-\frac{-2}{3} \\
& =\frac{250}{3}+\frac{2}{3} \\
& =252 / 3 \\
& =84
\end{aligned}
$$

16) $f(x)=2 x-6 ;[1,6]$
a) Sketch a graph of the function $f(x)$ over the given interval $[a, b]$.

b) Find any x -intercept within the interval $[a, b]$.

$$
\begin{aligned}
2 x-6 & =0 \\
2 x & =6
\end{aligned}
$$

c) Find the area between the x-axis and $f(x)$ over the interval $[a, b]$ using definite integrals. (Find this area by hand)

$$
\begin{aligned}
& \left|\int_{1}^{3}(2 x-6) d x\right| \text { (region beneath } \mathrm{x} \text {-axis) } \\
& \begin{aligned}
\left|x^{2}-6 x\right|_{1}^{3}|=|-9-(-5)| & =|-9+5| \\
& =|-4| \\
3^{2}-6(3)=-9 & =4
\end{aligned} \\
& 1^{2}-6(1)=-5 \\
& \int_{3}^{6}(2 x-6) d x \text { (region above the } x \text {-axis) } \\
& =2 \int_{3}^{6} x d x-\int_{3}^{6} 6 d x=2 \cdot \frac{1}{2} x^{2}-\left.6 x\right|_{6} ^{6} \\
& =x^{2}-\left.6 x\right|_{3} ^{6} \\
& \left.\begin{array}{l}
(6)^{2}-6(6)=0 \\
(3)^{2}-6(6)=-9
\end{array}\right] \\
& \text { answer: } 4+9=13
\end{aligned}
$$

17)

The function whose graph is represented by the dashed is $f(x)=2 x+5$
The function whose graph is represented by the solid graph is $g(x)=x^{2}+2$

b) Find the shaded area. Round to 2 decimals as needed. (you may use your calculator to determine the area) answer 10.67

