Chapter 5 Practice Test (Complete all problems)

#1-4: Find the following antiderivatives, be sure to include the plus "C" in your answer.

1) $\int 8x^3 dx$

$$= \Im \int \chi^{3} d \chi$$

$$1^{\text{st}} \int af(x)dx = a \int f(x)dx$$

$$= \Im \cdot \frac{1}{4} \chi^{4} + C$$

$$2^{\text{nd}} \text{ Power Rule: } \int x^{n}dx = \frac{1}{n+1}x^{n+1} + C \text{ provided} \Rightarrow -1$$

$$= 2 \chi^{4} + C$$

Answer: $2x^4 + C$

2)
$$\int (8x^{3} - 6x^{2} + 5)dx$$
1st:

$$\int (f(x) + g(x))dx = \int f(x)dx + \int g(x)dx$$

$$= 35x^{3}dx - 65x^{2}dx + 55dx$$

$$\int (f(x) - g(x))dx = \int f(x)dx - \int g(x)dx$$

$$= 75x^{3}dx - 65x^{3}dx + 55dx$$

$$= 75x^{3}dx - 65x^{3}dx + 5x^{4}dx$$

$$= 75x^{4} - 65x^{3}dx + 5x^{4}dx$$

$$= 75x^{4} - 65x^{3}dx + 5x^{4}dx$$

$$= 75x^{4} - 75x^{4}dx + 5x^{4}dx$$

$$= 75x^{4} - 75x^{4}dx + 5x^{4}dx$$

3rd:

Power Rule: $\int x^n dx = \frac{1}{n+1}x^{n+1} + C$ provided $\bigvee_{i=1}^{n+1} \neq -1$

Integral of a constant Rule: $\int a dx = ax + C$ (*a* is any real number)

answer: $2x^4 - 2x^3 + 5x + C$

3) $\int \frac{4}{x^3} dx$

1st: Rewrite with negative exponent

$$S4\chi-3d\chi$$

 $= 4 S \chi^{-3} d \chi$

$$2^{nd}: \int af(x)dx = a \int f(x)dx$$

 $= -\frac{24}{7} \frac{1}{7} \chi^{-2} + C$ 3rd: Power Rule: $\int x^n dx = \frac{1}{n+1}x^{n+1} + C$ provided $\bigvee_{0}^{n} \neq -1$

4th: rewrite with positive exponent

$$= \frac{-2}{\chi^2} + C$$

 $= -2 \chi^{-2} + C$

2

answe: $-\frac{2}{x^2} + C$

4)
$$\int \frac{7}{x} dx$$

1st: Rewrite with -1 exponent

 $\overline{}$

$$= 7 S x - 4 x$$
$$= 7 L x + C$$

2nd: $\int af(x)dx = a \int f(x)dx$

3rd: "ln" Rule: $\begin{cases} \int x^{-1} dx = \ln|x| + C \\ \int \frac{1}{x} dx = \ln|x| + C \end{cases}$

answer $7\ln|x| + C$

#5 – 10: Use u-substitution to evaluate the indefinite integrals.

5)
$$\int 2x(x^2+5)^2 dx$$

=
$$\int (\chi^2 + 5)^2 S \chi d \chi$$

Rewrite the problem so that the parenthesis is first:

$$Iet v=\chi^2+5\chi$$

Ju=2xdx

Next: let u = inside of the part

Rewrite the problem so that the "parenthesis is changed to an "u" $() = \chi^{2} + 5$

Next find $\frac{du}{dx}$

Multiply by dx to clear the fraction.

Next replace to make problem only have u's

 $\frac{-1}{3}0^{2}+C$ $\frac{-1}{3}(\chi^{2}+5)^{3}+C$ Next integrate: use Power Rule: $\int x^n dx = \frac{1}{n+1}x^{n+1} + C$ provided $y \neq -1$

Last change *u* back to get the answer

answer: $\frac{1}{3}(x^2+5)^3+C$

6) $\int 15x^2 e^{5x^3} dx$

Rewrite the problem so that the "e" is written first:

Next: let u = exponent of the e

let
$$v = 5x^3$$

 $= C \rho 5x^3 | 5x^3 x$

Rewrite the problem so that the exponent is changed to an "u"

Next find $\frac{du}{dx}$ $V = 5\chi^{3}$ $d\chi = 15\chi^{2}d\chi$ Multiply by dx to clear the fraction. $d\chi = 15\chi^{2}d\chi$

Next replace to make problem only have u's

Next integrate: "e" Rule $\int e^x dx = e^x + C$

Last change *u* back to get the answer

answer: $e^{5x^3} + C$

7) $\int 6x(x^2+5)^2 dx$ Rewrite the problem so that the parenthesis with the exponent is first: Next: let u = inside of the parenthesis Rewrite the problem so that the "parenthesis with the exponent is changed to an "u" Next find $\frac{du}{dx}$ Next find $\frac{du}{dx}$ Multiply by dx to clear the fraction. $\int dy = 3.2 \times dX$ $\int dy = 6 \times dX$

This is not good enough. Multiply to make a perfect match

Next replace to make problem only have u's

Next integrate: Power Rule: $\int x^n dx = \frac{1}{n+1}x^{n+1} + C$ provided $a \neq -1$

answer $(x^2 + 5)^3 + C$

$$= 3 \int v^{3} dv$$

$$= 3 \int v^{3} + c$$

$$= \int v^{3} + c$$

$$= \int v^{3} + c$$

1,12,5

(]

8)
$$\int 6xe^{x^2}dx$$

Rewrite the problem so that the "e" is written first:

Next: let u = exponent of the e

Rewrite the problem so that the exponent is changed to an "u"

4 =7

Ĵ

, 0 1

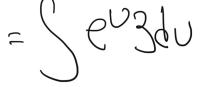
X9X

XqX

Next find $\frac{du}{dx}$

Multiply by dx to clear the fraction.

This is not good enough. Multiply to make a perfect match. XOX



X 6X

 $\sqrt{}$

 $= 3e^{\chi^2} + C$

Next replace to make problem only have u's

Next integrate: "e" Rule $\int e^x dx = e^x + C$

Last change *u* back to get the answer

answer $3e^{x^2} + C$

9)
$$\int \frac{4}{4x+1} dx \simeq \int 4 (4 \chi + l)^{-1} d\chi$$

Rewrite so that the problem is not a fraction, and has a parenthesis with a -1 exponent $(4 \times 1)^{-1} \cdot 4 d \times$

Rewrite the problem so that the parenthesis with the exponent is first: et v=4×11

Next: let u = inside of the parenthesis

Rewrite the problem so that the "parenthesis with the exponent is changed to an "u"

 $4\chi + 1$

Next find $\frac{du}{dx}$

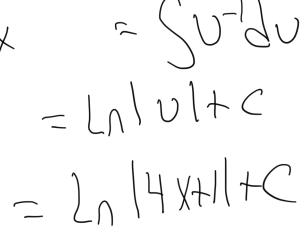
Multiply by dx to clear the fract

$$d v = 4d X$$

= 42x

Next replace to make problem only have u's

Next integrate: "ln" Rule: $\begin{cases} \int x^{-1} dx = \ln|x| + C \\ \int \frac{1}{x} dx = \ln|x| + C \end{cases}$



50-1.4dx

Last change *u* back to get the answer

answer ln|4x+1| + C

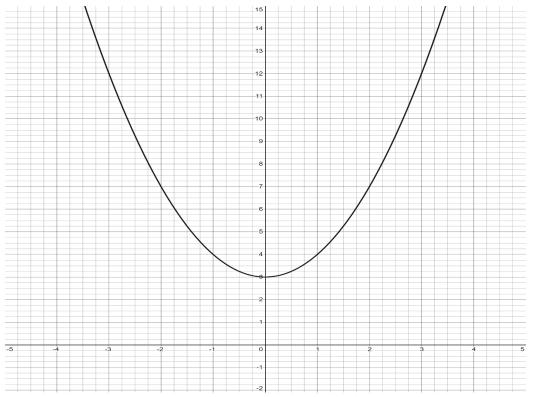
10)
$$\int \frac{s}{3x+7} dx = \int (3 \times +1)^{-1} d \times X$$
Rewrite so that the problem is not a fraction, and has a parenthesis with a -1 exponent
$$= \int (3 \times +1)^{-1} (3$$

Last change *u* back to get the answer

answer 3ln|3x + 7| + C

11) Follow the instructions and create rectangles on the provided graph, or one that you create (using right endpoints) to estimate the area between the curve and the x-axis.

 $f(x) = x^2 + 3$; from a = 0 to b = 3 using 3 rectangles



11a) Determine the width of each rectangle that will be used to estimate the area. (Each rectangle will have a width; $\frac{b-a}{n}$) 2 - 2 - 2 - 1 - 1

$$width = 1$$

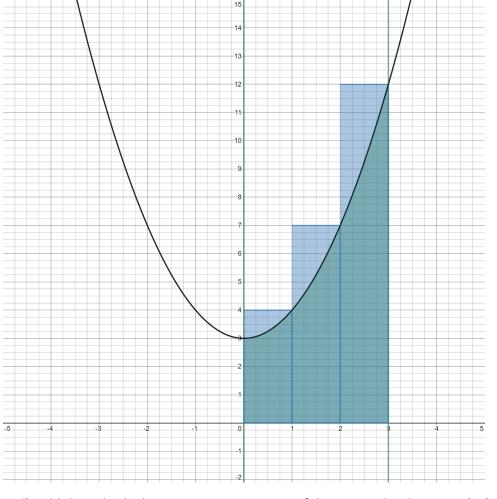
$$\frac{3-0}{3} - \frac{3}{3} - 1$$
 (winn)

11b) Increment by the interval width and draw rectangles on the graph that is provided. (next page)

Rectangle	Starting and ending x-values	
1	(0, 1)	
2	(1,2)	
3	(2,3)	

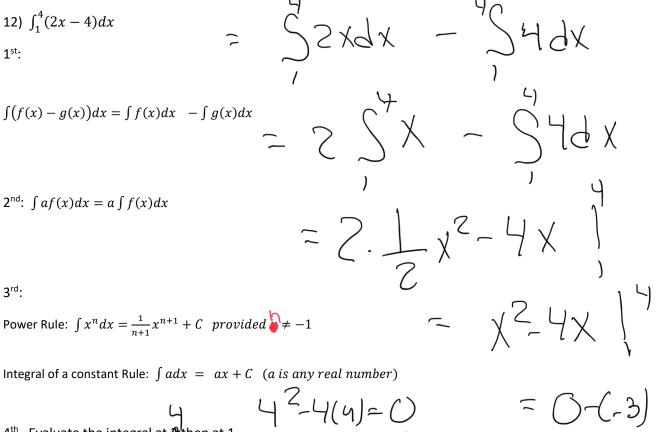
11c) Find the area of each rectangle. (Let the height of the rectangle be the function value at the right endpoint of the rectangle.) (areas are 4, 7, and 12)

Rectangle	Starting and ending x-	Length (height) $f(x) = x^2$	Width	Area
	values			
1	(0, 1)	$f(1) = 1^2 + 3 = 4$	1 - 0 = 1	A = 4 * 1 = 4
2	(1,2)	$f(2) = 2^2 + 3 = 7$	2 - 1 = 1	A = 7 * 1 = 7
3	(2,3)	$f(3) = 3^2 + 3 = 12$	3 - 2 = 1	A = 12 * 1 = 12



11d) Add the individual areas to get an estimate of the area under the curve (23) 477402 = 23

#12-15: Use the Fundamental Theorem of Calculus to evaluate the definite integral.



 4^{th} Evaluate the integral at $\mathbf{B}^{\mathbf{I}}$ then at 1

 $4^{2}-4(u)=0$ $1^{2}-4(1)=-3$

5th subtract the results to get the answer

answer 3

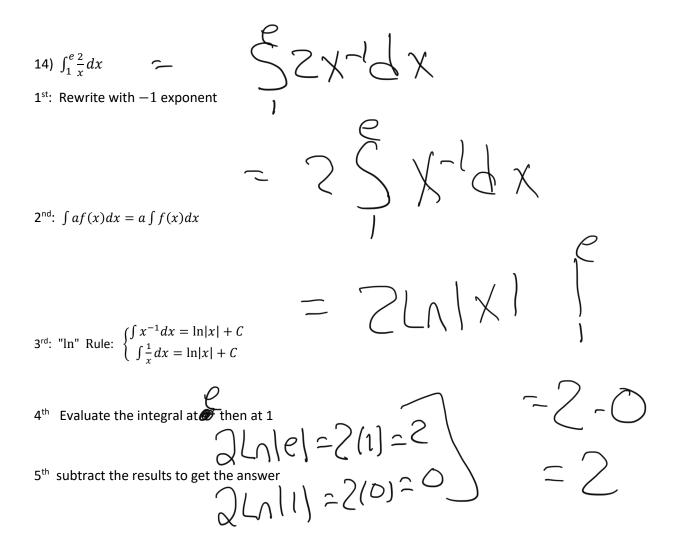
13)
$$\int_0^3 (2x)(x^2+1)^2 dx$$

S(X2+1)2 SX9x $let v = \chi^2 + 1$ $C_{12} = \chi^2 + 1$ Rewrite the problem so that the parenthesis is first:

Next: let u = inside of the parenthesis

Rewrite the problem so that the "parenthesis is changed to an "u" $=\chi_{\zeta} \tau$ du=ZXdX Next find $\frac{du}{dx}$ Multiply by dx to clear the fraction. Not good enough, multiply to make a perfect match Next replace to make problem only have u's Next integrate: use Power Rule: $\int x^n dx = \frac{1}{n+1}x^{n+1} + C$ provided $y \neq -1$ $(3^{2}+1)^{3} = \frac{1}{3} \cdot 1000$ Last change *u* back to compute the integral D $L_{2}(O)^{2}+1)$ Evaluate the integral at **4** then at **6** subtract the results to get the answer

answer: 333



answer: 2

15)
$$\int_0^3 4(2x-1)^2 dx$$

= S(5X-1)2.49X Rewrite the problem so that the parenthesis is first: $\int C \nabla = 2 \chi - \int$

= 502.4dx

= 752/2

Next: let u = inside of the parenthesis

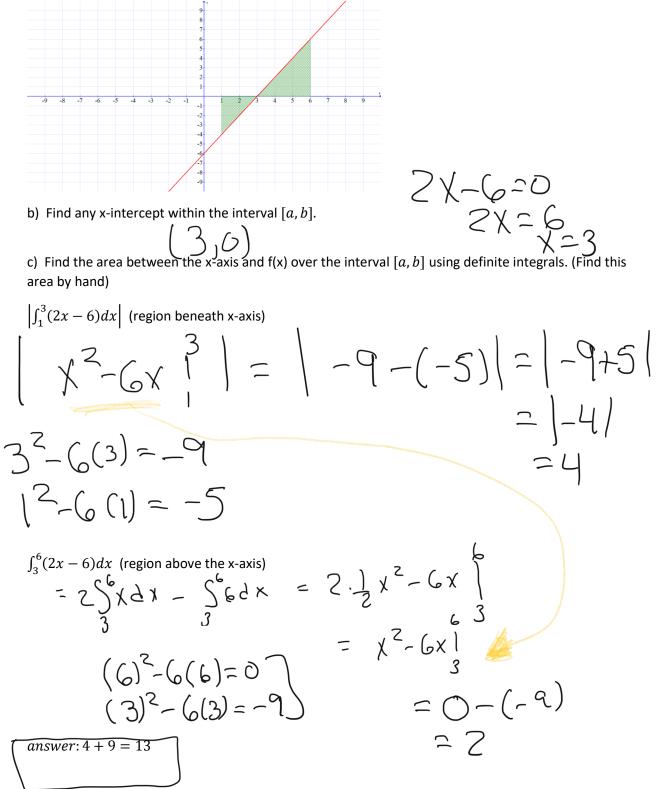
Rewrite the problem so that the "parenthesis is changed to an "u"

Next find
$$\frac{du}{dx}$$

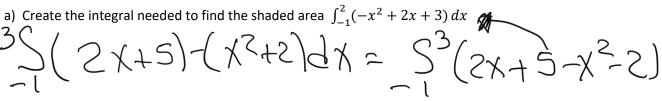
Wultiply by dx to clear the fraction. $Z d \psi = 2Z d X$
Multiply by dx to clear the fraction. $Z d \psi = 2Z d X$
Not good enough, multiply to make a perfect match $= \int U^2 Z d \psi$
Next replace to make problem only have u's $= 2\int U^2 d\psi$
Next integrate: use Power Rule: $\int x^n dx = \frac{1}{n+1}x^{n+1} + C$ provided $\neq -1$
Last change u back to compute the integral
Evaluate the integral at g then at g
Subtract the results to get the answer
 $\frac{3}{3}(2(3)-1)=\frac{250}{3}$
 $= 2\frac{50}{3}-\frac{-2}{3}$
 $answer 84$
 $= 2\frac{50}{3}+\frac{2}{3}$

16) f(x) = 2x - 6; [1,6]

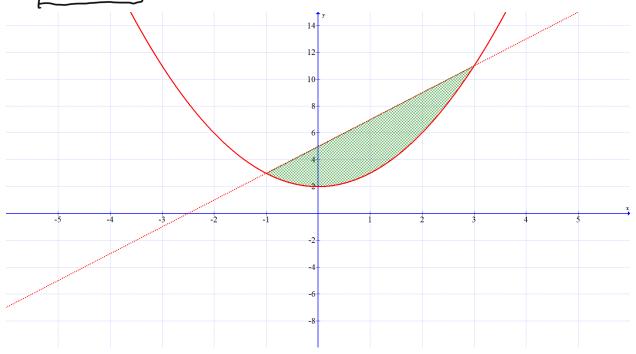
a) Sketch a graph of the function f(x) over the given interval [a, b].



The function whose graph is represented by the dashed is f(x) = 2x + 5The function whose graph is represented by the solid graph is $g(x) = x^2 + 2$



b) Find the shaded area. Round to 2 decimals as needed. (you may use your calculator to determine the area) answer 10.67



17)