Chapter 1 Practice test Part 1 (should complete all of the problems)

1) Below is a graph of the function $f(x)$.

Find the following.
a) $f(0)$
b) $f(1)$
c) $f(-2)$
d) $\lim _{x \rightarrow 0^{-}} f(x)$
e) $\lim _{x \rightarrow 0^{+}} f(x)$
f) $\lim _{x \rightarrow 0} f(x)$
g) $\lim _{x \rightarrow 2^{-}} f(x)$
h) $\lim _{x \rightarrow 2^{+}} f(x)$
i) $\lim _{x \rightarrow 2} f(x)$

1a) $f(0)=0$
1b) $f(1)=2$
1c) $f(-2)=1$

1d) $\lim _{x \rightarrow 0^{-}} f(x)=1$
1e) $\lim _{x \rightarrow 0^{+}} f(x)=1$
1f) $\lim _{x \rightarrow 0} f(x)=1$

1g) $\lim _{x \rightarrow 2^{-}} f(x)=1$
1h) $\lim _{x \rightarrow 2^{+}} f(x)=-1$
1i) $\lim _{x \rightarrow 2} f(x)=d n e$
2)

a) $\lim _{x \rightarrow \infty} f(x)=$
b) $\lim _{x \rightarrow-\infty} f(x)$

2a) $\lim _{x \rightarrow \infty} f(x)=2$
2b) $\lim _{x \rightarrow-\infty} f(x)=2$
3)

a) $\lim _{x \rightarrow \infty} f(x)$
b) $\lim _{x \rightarrow-\infty} f(x)$

3a) $\lim _{x \rightarrow \infty} f(x)=\infty$
3b) $\lim _{x \rightarrow-\infty} f(x)=-\infty$
4) Find the following limits using Algebra.
a) $\lim _{x \rightarrow 2}\left(x^{2}+4 x-3\right)$

4a) $\lim _{x \rightarrow 2}\left(x^{2}+4 x-3\right)=9$
b) $\lim _{x \rightarrow-2} \frac{x^{2}+5 x+6}{x^{2}+8 x+12}$

4b) $\lim _{x \rightarrow-2} \frac{x^{2}+5 x+6}{x^{2}+8 x+12}=\frac{1}{4}$

4c) $\lim _{x \rightarrow 49} \frac{\sqrt{x}-7}{x-49}$

4c) $\lim _{x \rightarrow 49} \frac{\sqrt{x}-7}{x-49}=\frac{1}{14}$
5) Find the following limits using Algebra.
a) $\lim _{x \rightarrow \infty} \frac{8 x^{2}+1}{2 x^{2}+4 x}$

5a) $\lim _{x \rightarrow \infty} \frac{8 x^{2}+1}{2 x^{2}+4 x}=4$
b) $\lim _{x \rightarrow \infty} \frac{5 x-4}{2 x^{2}-x+2}$

5b) $\lim _{x \rightarrow \infty} \frac{5 x-4}{2 x^{2}-x+2}=0$
6) Find all values of $x=a$ where the function is not continuous (discontinuous.) State the informal reason the function is not continuous at each value of $x=a$.

Informally a function is NOT CONTINOUS (or we can say the function is discontinuous) at a value of if one of three things happens on the graph of the function for that value of

- 1) There is a hole in the graph of the function, and the function is undefined at that value of $x=a$.
- 2) There is a hole in the graph of the function at and the function is defined at the value of $x=a$.
- 3) There is a jump in the graph at the value of $x=a$
- 4) There is a vertical asymptote at the value of $x=a$

$x=-3$ There is a jump in the graph at $x=-3$.
$x=1$ There is a hole in the graph of the function, and the function is undefined at $\mathrm{x}=1$
$x=4$ There is a hole in the graph at $x=4$ and the function is defined at $x=4$

7) Find all values of $x=a$ where the function is not continuous (discontinuous.) State the informal reason the function is not continuous at each value of $x=a$.

Informally a function is NOT CONTINOUS (or we can say the function is discontinuous) at a value of if one of three things happens on the graph of the function for that value of

- 1) There is a hole in the graph of the function, and the function is undefined at that value of $x=a$.
- 2) There is a hole in the graph of the function at and the function is defined at the value of $x=a$.
- 3) There is a jump in the graph at the value of $x=a$
- 4) There is a vertical asymptote at the value of $x=a$

7a) $f(x)=\frac{x+3}{x^{2}+4 x-5}$

Not continuous at $x=-5,1$ There is a vertical asymptote at both $x=$ -5 and $x=1$

7b) $f(x)=5 x+10$

Function is continuous everywhere

Chapter 1 Practice Test Part 2
8) Find the average rate of change for each function over the given interval. It is not necessary to sketch a graph to model the average rate of change.

$$
f(x)=x^{3}+5 x \text { between } x=1 \text { and } x=2
$$

8) Average rate of change $=12$
9) $f(x)=x^{2}+3$
a) Use the definition of the derivative to find $f^{\prime}(x)$
b) Find $f^{\prime}(5)$

9a) $f^{\prime}(x)=2 x$
9b) $f^{\prime}(5)=10$
10) $f(x)=\frac{2}{x}$

Find a formula to find the slope of a tangent line.
10) $f^{\prime}(x)=-\frac{2}{x^{2}}$
11) A toy rocket is launched straight up so that its height s, in meters, at time t, in seconds, is given by $s(t)=-2 t^{2}+20 t$.
a) Find $s^{\prime}(t)$
b) Find $s^{\prime}(2)$
c) Interpret your answer to part b.

11a) $s^{\prime}(t)=-4 t+20$

11b) $s^{\prime}(2)=12$

11c) velocity is 12 meters per second

