Grima MAT 212

Chapter 2 – extra practice test

#1-13: Use the appropriate technique to find the derivative of the function below.

1)
$$f(x) = 3x^2 + 7x - 9$$

2)
$$f(x) = \frac{14}{x^2}$$

3)
$$f(x) = 20\sqrt{x}$$

4)
$$f(x) = \frac{24x^2 + 12x}{6x}$$

5)
$$f(x) = (2x+5)(9x+4)$$
 6) $f(x) = \frac{4x}{2x-5}$

6)
$$f(x) = \frac{4x}{2x-5}$$

7)
$$f(x) = 6(7x + 2)^2$$

8)
$$f(x) = 2x(4x + 5)^2$$

9)
$$f(x) = e^{15x}$$

10)
$$f(x) = (3x + 1)e^{2x}$$

$$11) f(x) = \frac{x^5}{e^x}$$

12)
$$f(x) = \ln(7x^2)$$

$$13) f(x) = 13xln(x)$$

14)
$$f(x) = 3x^2 + 9x + 3$$
; $x = 5$

- a) Find the slope of the tangent line to the graph of f(x) for the given value of x
- b) Find the equation of the tangent line to the graph of f(x) for the given value of x.

15)
$$f(x) = e^{9x^2}$$

- a) Find all values of x where the tangent line to the graph of f(x) is horizontal.
- b) Find the equation of the tangent line to the graph of the function for the values of x found in part a.
- 16) Bob's hacky sack company determines the profit function for producing and selling a certain hacky sack can be modeled by: $P(x) = -0.8x^2 + 40x$

Where x represents the number of hacky sacks sold and P(x) represents the monthly profit in dollars.

Find the following:

- a) P(20)
- b) Explain using words what your answer to part $\underline{\mathbf{a}}$ means.
- c) Find P'(x)
- d) Find P'(20)
- e) Explain using words what your answer to part <u>d</u> means.

Answers:

1)
$$f'(x) = 6x + 7$$

1)
$$f'(x) = 6x + 7$$
 2) $f'(x) = -\frac{28}{x^3}$ 3) $f'(x) = \frac{10}{\sqrt{x}}$

3)
$$f'(x) = \frac{10}{\sqrt{x}}$$

4)
$$f'(x) = 4$$

$$5) \ f'(x) = 36x + 53$$

4)
$$f'(x) = 4$$
 5) $f'(x) = 36x + 53$ 6) $f'(x) = \frac{-20}{(2x-5)^2}$

7)
$$f'(x) = 84(7x + 2)$$

7)
$$f'(x) = 84(7x + 2)$$
 8) $f'(x) = 2(4x + 5)(12x + 5)$

9)
$$f'(x) = 15e^{15x}$$

9)
$$f'(x) = 15e^{15x}$$
 10) $f'(x) = e^{2x}(6x + 5)$

11)
$$f'(x) = \frac{x^4(5-x)}{e^x}$$
 numerator may be written differently

12)
$$f'(x) = \frac{2}{x}$$

13)
$$f'(x) = 13(1 + \ln(x)) \text{ or } 13(\ln(x) + 1)$$

14a)
$$m = 39$$

14b)
$$y = 39x - 72$$

15a)
$$x = 0$$

15b)
$$y = 1$$

16a)
$$P(20) = 480$$

16b) The total monthly profit will be \$480 in a month where 20 hacky sacks are sold.

16c)
$$P'(x) = -1.6x + 40$$

16d)
$$P'(20) = 8$$

16e) An additional profit of \$8 will be made when the 21st hacky sack is sold in a month.