Chapter 2 Practice Test Part 1 (complete all problems)
\#1-13: Use the appropriate technique to find the derivatives of the following functions.

1) $f(x)=3 x^{2}-5 x+4$

This should be solved using the power rule.

$$
\begin{gathered}
f^{\prime}(x)=\frac{d}{d x}\left(3 x^{2}\right)-\frac{d}{d x}(5 x)+\frac{d}{d x}(4) \\
f^{\prime}(x)=2 \cdot 3 x^{\prime}-5+0 \\
f^{\prime}(x)=6 x-5
\end{gathered}
$$

Answer: $f^{\prime}(x)=6 x-5$
2) $f(x)=\frac{-3}{x^{2}}$

$$
f(x)=-3 x^{-2}
$$

This can be done by rewriting and then using the power rule, Or

$$
f^{\prime}(x)=-2 .-3 x-2-1
$$

You do not rewrite and use the quotient rule

$$
\begin{aligned}
& f^{\prime}(x)=6 x^{-3} \\
& \quad f^{\prime}(x)=\frac{6}{x^{3}}
\end{aligned}
$$

REWRITE AND USE POWER RULE METHOD

QUOTIENT RULE METHOD

$$
f^{\prime}(x)=\frac{0-(-6 x)}{\left(x^{2}\right)^{2}}
$$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{6 x}{x^{4}} \\
& f^{\prime}(x)=\frac{6 x}{x x x x}=\frac{6}{x^{3}}
\end{aligned}
$$

3) $f(x)=2 \sqrt[3]{x^{2}}$

This needs to be done by rewriting and then using the power rule,

$$
\begin{aligned}
& f(x)=2 x^{2 / 3} \\
& f^{\prime}(x)=\frac{2}{3} \cdot 2 x^{2 / 3-3 / 3} \\
& f^{\prime}(x)=\frac{4}{3} x^{-1 / 3} \\
& f^{\prime}(x)=\frac{4}{3} \cdot \frac{1}{x^{1 / 3}}
\end{aligned}
$$

Answer: $f^{\prime}(x)=\frac{4}{3 \sqrt[3]{x}}$

$$
\begin{array}{r}
f^{\prime}(x)=\frac{4 \cdot 1}{3 \cdot \sqrt[3]{x}} \\
f^{\prime}(x)=\frac{4}{3 \sqrt{x}}
\end{array}
$$

4) $f(x)=\frac{5 x^{2}+3}{x^{2}}$

$$
f(x)=\frac{5 x^{2}}{x^{2}}+\frac{3}{x^{2}}
$$

This can be done by rewriting and then using the power rule,

QUOTIENT RULE METHOD
Denominator

Answer: $f^{\prime}(x)=-\frac{6}{x^{3}}$

$$
f^{\prime}(x)=\frac{10 x^{3}-10 x^{3}-6 x}{x^{4}}=\frac{-6 x}{x x x x}
$$

5) $f(x)=\left(x^{2}+6 x\right)(3 x-1)$

This can be done by rewriting and then using the power rule, Or $\quad F x^{2}, 3 x \quad O x^{2} \cdot-1$
You do not rewrite and use the Product rule

$$
3 x^{3}-1 x^{2}+18 x^{2}-6 x
$$

REWRITE AND USE POWER RULE METHOD

$$
\begin{aligned}
& \text { ER RULE Method }=3 x^{3}+17 x^{2}-6 x \\
& f^{\prime}(x)=3.3 x^{2}+2.17 x-6 \\
& f^{\prime}(x)=9 x^{2}+34 x-6
\end{aligned}
$$

PRODUCT RULE METHOD
First factor
Derivative

cross multiply top down
$3\left(x^{2}+6 x\right)=3 x^{2}+18 x$
$(2 x+6)(3 x-1)$
$=6 x^{2}-2 x+18 x-6$

$=6 x^{2}+16 x-6$

Answer: $f^{\prime}(x)=9 x^{2}+34 x-6$

$$
f^{\prime}(x)=9 x^{2}+34 x-6
$$

6) $f(y)=\frac{y^{2}}{3 y-5}$

You must use the quotient rule for this derivative.

answer: $f^{\prime}(y)=\frac{y(3 y-10)}{(3 y-5)^{2}}$

7) $f(t)=2(4 t-3)^{5}$

This is a chain rule problem.
CHAIN RULE short cut to find a derivative of a problem written in the form:

$$
\begin{gathered}
f(x)=a(\text { inside parenthesis })^{n} \\
f^{\prime}(x)=n * a *(\text { derivative of inside of parenthesis })^{n-1}
\end{gathered}
$$

$$
n=5
$$

Derivatric mas doe parermesis 4

Answer: $f^{\prime}(t)=40(4 t-3)^{4}$

$$
\begin{aligned}
& f^{\prime}(x)=5 \cdot 2 \cdot 4(4 T-3)^{4} \\
& f^{\prime}(x)=40(4 T-3)^{4}
\end{aligned}
$$

8) $y=4 x^{3}(5 x+3)^{2}$

This is first a product rule problem. You will need to use the chain rule as one derivative in the power rule.

$$
\begin{aligned}
& y^{\prime}= 40 x^{3}(5 x+3)+\left(12 x^{2}(5 x+3)^{2}\right) \\
&= 4\left(10 x^{3}(5 x+3)+3 x^{2}(5 x+3)^{2}\right) \\
&= 4 x^{2}\left(10 x((5 x+3))+3(5 x+3)^{2}\right) \\
&=\left(1 x^{2}(5 x+3)(10 x+3(5 x+3))\right. \\
& 10 x+15 x+2 \\
& y^{\prime}=4 x^{2}(5 x+3)(25 x+9)
\end{aligned}
$$

9) $f(x)=x^{2}+3 x$; at $x=2$
a) Find the slope of the tangent line to the graph of the function for the given value of x.
b) Find the equation of the tangent line to the graph of the function for the given value of x.

point

Answer ga) $m=7$
gb) $y=7 x-4$

10) $f(x)=x^{2}+8 x-4$
a) Find all values of x where the tangent line is horizontal
b) Find the equation of the tangent line to the graph of the function for the values of x found in part a .
(a)

$$
\begin{aligned}
f^{\prime}(x) & =2 x+8 \\
2 x+8 & =0 \\
2 x & =-8 \\
x & =-4
\end{aligned}
$$

b) y coors point

$$
\begin{aligned}
y=f(-4)= & (-4)^{2}+8(-4)-4 \\
& =-20 \\
\text { point } & (-4,-20)
\end{aligned}
$$

$$
\text { 10a) } x=-4 \quad \text { 10b) } y=-20
$$

$$
\text { Slope } m=0
$$

$$
\begin{aligned}
& \text { All horizontal ties } \\
& \text { have } M=0
\end{aligned}
$$ have $m=0$

$$
\begin{gathered}
y-(-20)=0(x-(-4)) \\
y+20=0 \\
-20-20 \\
y=-20
\end{gathered}
$$

Chapter 2 Practice Test Part 2
11) $f(x)=e^{x^{2}}$

$$
\begin{aligned}
& \text { Rule needed } \\
& f(x)=c e^{g(x)} \\
& f^{\prime}(x)=c g^{\prime}(x) e^{g(x)} \\
& \text { Where " } \mathrm{c} \text { " is a constant (number without a letter) }
\end{aligned}
$$

$$
\begin{aligned}
& C=1 \\
& g(x)=x^{2} \\
& g^{\prime}(x)=2 x
\end{aligned}
$$

Answer: $f^{\prime}(x)=2 x e^{x^{2}}$

$$
\begin{aligned}
& f^{\prime}(x)=1 \cdot 2 x e^{x^{2}} \\
& f^{\prime}(x)=2 x e^{x^{2}}
\end{aligned}
$$

12) $f(y)=(2 y-4) e^{5 y^{2}}$

This is a product rule problem. We will need to find an " e " derivative during the product rule.
Rule needed for the "e"

$$
\begin{aligned}
& f(x)=c e^{g(x)} \\
& f^{\prime}(x)=c g^{\prime}(x) e^{g(x)}
\end{aligned}
$$

Where " c " is a constant (number without a letter)

Also need the product rule as both factors have an x .

First factor $2 y-4$	Second Factor $e^{5 y^{2}}$
Derivative 2	Derivative $10 y e^{5 y^{2}}$
cross multiply top down	cross multiply bottom up
$(2 y-4) 10 y e^{5 y^{2}}$	$2 e^{5 y^{2}}$

$$
f^{\prime}(y)=2 e^{5 y^{2}}\left(\underset{10 y^{2}-20 y}{5 y(2 y-4)+1)}\right.
$$

Answer: $f^{\prime}(y)=2 e^{5 y^{2}}\left(10 y^{2}-20 y+1\right)$

$$
f^{\prime}(y)=2 e^{5 y^{2}}\left(10 y^{2}-20 y+1\right)
$$

13) $f(t)=\frac{t^{4}}{e^{t}}$

This is a product rule problem. We will need to find an "e" derivative during the product rule.
Rule needed for the " e "
$f(x)=c e^{g(x)}$
$f^{\prime}(x)=c g^{\prime}(x) e^{g(x)}$
Where " c " is a constant (number without a letter)

Also need the quotient rule because of the division.

Denominator $e T$	T^{4} Derivative
cross multiply top down	
$4 T^{3} e^{T}$	Derivative $4 T^{3}$
$T^{4} e^{T}$	

$$
f^{\prime}(T)=\frac{4 T^{3} e T-T^{4} e^{T}}{\left(e^{T}\right)^{2}}=\frac{T^{3} e^{T}(4-T)}{e^{T} e T}
$$

Answer: $f^{\prime}(t)=\frac{t^{3}(-t+4)}{e^{t}}=\frac{-t^{3}(t-4)}{e^{t}}$

$$
\begin{aligned}
f^{\prime}(T) & =\frac{T^{3}(4-T)}{e T} \\
\text { or } f^{\prime}(T) & =\frac{-T^{3}(T-4)}{e^{T}}
\end{aligned}
$$

14) $f(t)=\ln \left(3 t^{5}\right)$

Rule needed

$$
\begin{aligned}
& f(x)=\operatorname{cln}[g(x)] \\
& f^{\prime}(x)=\frac{\operatorname{cg\prime }(x)}{g(x)}
\end{aligned}
$$

c is a constant

Answer: $f^{\prime}(t)=\frac{5}{t}$
15) $y=x^{2} \ln (x)$

This is a product rule problem. We will need to find an "In" derivative during the product rule.

Rule needed for In
$f(x)=\operatorname{cln}[g(x)]$
$f^{\prime}(x)=\frac{\operatorname{cg\prime }(x)}{g(x)}$
c is a constant

Also need product rule

$$
\begin{aligned}
& y^{\prime}=x+2 x \ln (x) \\
& y^{\prime}=x(1+2 \ln (x))
\end{aligned}
$$

Answer: $\frac{d y}{d x}=x+2 x \ln (x)$ or $x(1+2 \ln (x))$ or $x(2 \ln (x)+1)$
16) $f(x)=e^{x^{2}}$
a) Find all values of x where the tangent line is horizontal
b) Find the equation of the tangent line to the graph of the function for the values of x found in part a.
a) Find derivative, then solve derivative equal to zero.

Rule needed for the derivative

$$
\begin{aligned}
& f(x)=c e^{g(x)} \\
& f^{\prime}(x)=c g^{\prime}(x) e^{g(x)}
\end{aligned}
$$

Where " c " is a constant (number without a letter)

16a) $x=0$

b) $y \operatorname{coons}$ point $y=f(0)=e^{0^{2}}=e^{0}=1$ point (0,1) $M=0 \begin{aligned} & \text { All hor, zonTal } \\ & \text { lines have slope } 0\end{aligned}$

pact b $y=1$
17) Suppose that the cost in dollars to make x supersized candy bars is given by: $C(x)=\ln (x)+0.15 x$
a) Find $\mathrm{C}(4)$ (round to 2-decimals)

$$
C(4)=L n(4)+0.1 S(4)=1.986
$$

b) Interpret your answer to part a.
$C(4)=1.99$
see below
c) Create the marginal cost function $C^{\prime}(x)$ for this product.

$$
e^{\prime}(x)=\frac{1}{x}+0.15
$$

d) Find $C^{\prime}(4)$ (round to 2 decimals)

$$
C^{\prime}(4)=\frac{1}{4}+0.15=0.40
$$

e) Interpret your answer to question part d.
see below

Answers: 17a) $C(4)=1.99$
17b) It will cost $\$ 1.99$ to make 4 super-sized candy bars.
17c) $C^{\prime}(x)=\frac{1}{x}+.15$
17d) $C^{\prime}(4)=0.40$
17e) It will cost $\$ 0.40$ or 40 cents to make the $5^{\text {th }}$ candy bar.
18) A Corporation determines the weekly profit $(P(x))$ from selling certain widget in produces and sells:

$$
P(x)=-0.01 x^{2}+20 x-20000 \leq x \leq 1000
$$

a) Find $P(500)$
b) Interpret your answer to part a. (round your answer to 2 decimals)
c) Create the marginal profit function $P^{\prime}(x)$ for this product.
d) Find $P^{\prime}(500)$.
e) Interpret your answer to part d.

$$
\begin{aligned}
& \text { a) } P(500)=-0.01(500)^{2}+20(500)-2000 \\
& =5500
\end{aligned}
$$

b) See below

$$
\text { c) } \begin{aligned}
p^{\prime}(x) & =2 \cdot-0.01 x+20 \\
p^{\prime}(x) & =-0.02 x+20 \\
\text { d) } p^{\prime}(500) & =-0.02(500)+20 \\
& =10
\end{aligned}
$$

Answers:
18a) $P(500)=5500 \quad$ e) See below
18b) Profit will be $\$ 5500$ in a week when 500 widgets are produced and sold.
18c) $P^{\prime}(x)=-0.02 x+20$
18d) $P^{\prime}(500)=10$
18e) Company will earn an additional $\$ 10$ in profit when $501^{\text {st }}$ widget is produced and sold.

