HIGHER ORDER POLYNOMIALS

The two problems we will solve in this section are:
I. Given some zeros, find a function \(f(x) = Ax^3 + Bx^2 + Cx + D \) that has those zeros;
II. Given \(f(x) = Ax^3 + Bx^2 + Cx + D \), find the zeros of \(f(x) \).

HIGHER ORDER 1 CREATING POLYNOMIALS FROM REAL & COMPLEX ZEROS

Given some zeros, find a function \(f(x) = Ax^3 + Bx^2 + Cx + D \) that has those zeros:

Examples:
Zeros \(-1, 2, -3\) => \(f(x) = Ax^3 + Bx^2 + Cx + D \) where \(A=1, B=-2, C=1, D=-2; \) i.e. \(f(x) = x^3 + 2x^2 - 5x - 6 \).
Zeros \(0, 4, -3\) => \(f(x) = Ax^3 + Bx^2 + Cx + D \) where \(A=1, B=-2, C=1, D=-2; \) i.e. \(f(x) = x^3 + 2x^2 + x - 2 \).
Zeros \(\frac{1}{2}, 1, -2\) => \(f(x) = Ax^3 + Bx^2 + Cx + D \) where \(A=2, B=-1, C=-5, D=2; \) i.e. \(f(x) = 2x^3 + x^2 - 5x + 2 \).
Zeros \(-1, 0, 0\) (twice) => \(f(x) = Ax^3 + Bx^2 + Cx + D \) where \(A=1, B=1, C=D=0; \) i.e. \(f(x) = x^3 + x^2 \).
Zeros \(3, 1+i, 1-i\) => \(f(x) = Ax^3 + Bx^2 + Cx + D \) where \(A=1, B=-2, C=1, D=-2; \) i.e. \(f(x) = x^3 + 2x^2 + x - 2 \).
Zeros \(-1, 0, 0\) (twice) => \(f(x) = Ax^3 + Bx^2 + Cx + D \) where \(A=1, B=1, C=D=0; \) i.e. \(f(x) = x^3 + x^2 \).

HIGHER ORDER 2 SYNTHETIC DIVISION (S.D.)

Synthetic Division is a tool.

HIGHER ORDER 3 FIND ZEROS USING S.D.

Given \(f(x) = Ax^3 + Bx^2 + Cx + D \) and one of its zeros, find the other zeros of \(f(x) \).

In each case, give yourself one of the zeros (any one).
1) Find the zeros of \(f(x) = x^3 + 2x^2 - 5x - 6 \). Answer: \(-1, 2, -3\)
2) Find the zeros of \(f(x) = x^3 - x^2 - 12x \). Answer: \(0, 4, -3\).
3) Find the zeros of \(f(x) = x^3 + 2x^2 - 2 \). Answer: \(2, i, -i\).
4) Find the zeros of \(f(x) = 2x^3 + x^2 - 5x + 2 \). Answer: \(\frac{1}{2}, 1, -2\).
5) Find the zeros of \(f(x) = x^3 + x^2 \). Answer: \(-1, 0, 0\) (twice).
6) Find the zeros of \(f(x) = x^3 + 2x^2 + 8x - 6 \). Answer: \(3, 1+i, 1-i\).
7) Find the zeros of \(f(x) = x^3 - x^2 - 18 \). Answer: \(3, 1+i\sqrt{5}\).
8) Find the zeros of \(f(x) = x^3 - x + 6 \). Answer: \(-2, 1 \pm i\sqrt{2}\).
9) Find the zeros of \(f(x) = x^3 - 1 \). Answer: \(1, (-1 \pm i\sqrt{3})/2\).
10) Find the zeros of \(f(x) = x^3 - x^2 - 13x - 3 \). Answer: \(-3, 2\pm i\sqrt{5}\).
HIGHER ORDER 4 USE S.D. EVALUATE f(x) at x = k, i.e. Use S.D. to find f(k).

HIGHER ORDER 5 THE INTERMEDIATE VALUE THEOREM

HIGHER ORDER 6 FAR BEHAVIOR & Lead Term Test.
Use \((x^2-9)(x-2)=x^3-2x^2-9x+18\) to demo "genetic makeup" of \(f(x)\) and the battle between terms.

\[\text{Lead Term Test (Ax}^N\text{ is the lead term)} \]

<table>
<thead>
<tr>
<th>(A)</th>
<th>(N) is even</th>
<th>(N) is odd</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A > 0)</td>
<td>ur, ul</td>
<td>ur, dl</td>
</tr>
<tr>
<td>(A < 0)</td>
<td>dr, dl</td>
<td>dr, ul</td>
</tr>
</tbody>
</table>

HIGHER ORDER 7 THE RATIONAL ZEROS TEST
Here are a nice set of problems to have students work in pairs to illustrate various concepts:
List all possible Rational Zeros & Use SD to test them!
Have them work in pairs to Find Zeros and Sketch:
\[f(x) = x^3 - 6x^2 + 11x - 6; 1, 2, 3 \]
\[f(x) = 2x^3 + 3x^2 - 1; -1, -1, 1/2 \]
\[f(x) = x^5 - x^4 - 3x^3 + 5x^2 - 2x = (x-1)^3(x+2)x \]
Read about other tests (desperate attempts) to find zeros - Descartes' rule of signs & upper and lower bounds theorem.

HIGHER ORDER 8 THE FUNDAMENTAL THEOREM OF ALGEBRA
Every polynomial has at least one complex zero.
Read page 331-332.

<table>
<thead>
<tr>
<th>(f(x))</th>
<th>Number of rational zeros</th>
<th>Number of irrational zeros</th>
<th>Number of complex zeros</th>
<th>Total number of zeros</th>
<th>Number of x-axis crossings</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x^3-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x^3-2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x^3-x^*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x^3-2x)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Remember the Irrational Conjugate Zeros Theorem: If a polynomial with rational coefficients has a zero \(a+b\sqrt{c}\) where \(\sqrt{c}\) is irrational and \(a\) & \(b\) are rational, then \(a-b\sqrt{c}\) is also
a zero. HOWEVER, if the zero is of the form b√c then the conjugate theorem does not apply.

Example: f(x) = x³ - 2 has one irrational zero, \(\sqrt[3]{2} \), and two complex zeros \(-2^{\frac{2}{3}} \pm 2^{\frac{2}{3}} \sqrt[3]{3}i\).

HIGHER ORDER 9 PUTTING IT ALL TOGETHER
To sketch a polynomial, find the zeros and examine the far behavior:

Try These: Sketch using zeros and far behavior:

a) \(f(x) = (1/3)x^3(x-4)^2 \)

b) \(f = x^3 - 9x \)

c) \(y = x^4 - 4x^2 \)

d) \(x^3 - 4x^2 + 4x \)

Key Point: If a factor has an even exponent, that indicates double zeros and the graph bounces at that zero location!

KEY POINTS SUMMARY & REVIEW:
1. BIG 8 f notation/concepts
2. \(c_1f[c_2(x-c_3)]+c_4 \)
3. \(cf(x) \) does not affect zeros
4. Focus on \(x^2 \) and the \(x^2+1=0 \) lead in to Complex Numbers
5. zeros=>factors & factors=>zeros
6. Real zeros => x-incpts & Complex zeros => no x-incpt
7. We still use the QF tool even for polynomials of higher degree!
8. Multiplicity
9. Degree
10. Complex conjugate zeros: Complex conjugate zeros come in conjugate pairs if \(f(x) \) has real coefficients!
11. Irrational conjugate zeros: If \(f(x) \) has rational coefficients and has a zero \(a+b\sqrt{c} \)
 where \(\sqrt{c} \) is irrational and \(a \& b \) are rational, then \(a-b\sqrt{c} \) is also a zero; If the zero is of
 the form \(b\sqrt{c} \) then the irrational conjugate theorem does not apply. Example: \(f(x)=x^3-2 \)
 has one irrational zero, \(\sqrt[3]{2} \) (and two complex zeros \(-2^{\frac{2}{3}} \pm 2^{\frac{2}{3}} \sqrt[3]{3}i\)).
12. If \((x-r)^N \) is a factor of \(f(x) \), then \(f \) bounces at \(x=r \) if \(N \) is even and \(f \) passes through the
 x-axis if \(N \) is odd.
13. The bigger \(N \) is in \((x-r)^N \), the flatter \(f \) is near the zero \(r \).
14. Read the summary boxes in Lial on pp 321-348. These summarize the key points about
 synthetic division, conjugate pairs, zeros, factors, etc and how they are all related to
 each other.

A FEW REVIEW PROBLEMS:
find the zeros of \(x^3 + x^2 + 9x + 9 \) given 3i is a zero
find the zeros of \(2x^4 + 5x^3 + 4x^2 + 5x + 2 \)
Find zeros of \(f(x)=1-x^3 \)
Find a poly with zeros 5 & $\sqrt{3}$
Find a poly with zeros 5 & i
If zeros are -1 & 0 & 0 (twice) then $f(x)=Ax^3+Bx^2+Cx+D$. Find the coefficients.