- Place the following formulas into groups: - HCI (aq) - $\bullet SO_2$ - •CO₂ - NaBr - H₂SO₄ (aq) - ●H₃PO₄ (aq) - NiCl₂ $\bullet H_2O$ - $\bullet P_2O_5$ - •BaSO₄ •CoF₃ - •KNO₃ •CH₃CH₂CH₃ - •HI (aq) ### **Binary Covalent Compounds: 2 Nonmetals** - Write the most metallic Mono: 1 element first - Di: 2 - mono tri hepta nona • Use prefixes to indicate • Tri: 3 (triathlon) number of atoms (can't use charges to balance Penta: 4 (tetris) • Penta: 5 (pentagon) • First element name; - - tetra - penta - Hexa: 6 (hexagon) - second element ends in Hepta: 7 • Octa: 8 (octagon) - Nona: 9 (nano) - Deca: 10 (decathlon) deca - **Binary Covalent Compounds: 2 Nonmetals** - Use mono to indicate 1 atom unless the first atom has only 1, then it's dropped. - lacktriangle SO $_3$ is sulfur trioxide - Group Work: Write the name for NO₂ - Group Work: Write the formula for dinitrogen pentoxide ### **Binary Covalent Compounds: Group Work** - Write formulas for the following names: - ♦ silicon tetrachloride - ♦ carbon monoxide - ♦ tetraphosphorus hexaoxide - Write names for the following formulas: - ♦ N₂O₄ - ♦ Cl₂O₇ - ♦ SF₆ - Worked Ex. 2.11; Problems 2.19, 2.20; Key Concept 2.21 ## **Common Charges of Ions** • Figure 2.11 Mg²⁺ K+ Ca²⁴ Sr2+ In³⁺ Rb+ TI+ TI3+ ### **Practice on Ionic Charges: Group Work** - What are the common charges when atoms of the following elements become ions: - ♦ potassium - ♦ sulfur - ♦ chlorine - ♦ magnesium - ♦ nitrogen - ♦ cobalt - ♦ silver - ♦ zinc - ▼ ZIIIC - ♦ cadmium ### Writing Formulas - Ionic Compounds - The short-cut to writing formulas is similar to cross-multiplying. Cross the charge of one ion to become the number needed for the other ion. - \bullet Na¹⁺ and O²⁻ \rightarrow Na₂O - Short-cut doesn't always work. - ◆ FeO: iron doesn't have a +1 charge, so we have to know that oxygen is usually a -2. Then we know that iron must have a +2 charge in this compound. ### **Writing Ionic Formulas** - Write the formulas of compounds made by the following pairs of ions. - Na + F - Na + S - Na + N - Mg + N - Ba + Cl Ba + O - Ba + O Al + Cl ### **Group Work** - Write neutral ionic formulas using the following pairs of ions: - ♦ Ba and Cl - ♦ Co+2 and N - ♦ Fe⁺³ and N - ♦ K and P - ♦ Zn and O ### **Metal vs Nonmetal Ions** - Metal atoms and metal ions are named the same. - ♦ Na: sodium - ♦ Na +: sodium ion - Nonmetal atoms and nonmetal ions differ in the suffix (e.g., -ine becomes -ide) - ♦ F: fluorine - ♦ F ⁻: fluoride ion - ♦ N: nitrogen - ♦ N³-: nitride ### **Binary Ionic Compounds (2 elements)** - Metal cation + nonmetal anion - NaCl - ♦ Sodium chloride - LiF - ♦ Lithium fluoride - CaBr₂ - ♦ Calcium bromide - Transition metals: include charge of metal in the name - ♦ FeCl₃: iron (III) chloride - ♦ CuF₂: copper (II) fluoride ### **Binary Ionic Compounds: Group Work** - Write formulas for the following names: - ♦ aluminum bromide - ♦ titanium(IV) chloride - ♦ chromium(III) sulfide - Write names for the following formulas: - ♦ Ba₃N₂ - ♦ K₂S - ♦ MnF₂ - Worked Ex. 2.10, Problems 2.16, 2.17 ### **Polyatomic Ions - Oxoanions** - Most common ions (<u>KNOW</u> Tables 2.3 and 2.4, handout on my website): - ♦ CO₃²⁻ carbonate - ♦ NO₃ nitrate - ♦ PO₄3- phosphate - ♦ SO₄²⁻ sulfate - ♦ OH- hydroxide - ♦ NH₄+: ammonium # ### **Oxoanion Nomenclature** - 1 More oxygen: per-__ -ate - Most common: ____ -ate - 1 Less oxygen: ___ -ite - Still fewer: hypo-_-ite - What is the name of NaClO? - What is the formula for sodium chlorate? - What is the name of FePO₄? ### Nomenclature with Polyatomic Ions - Name compounds with polyatomic ions just like binary ionic, but use the name of the polyatomic ion. - NaNO₃ - ♦ sodium nitrate - K₃PO₄ - ♦ potassium phosphate - Cu(OH)₂ - ♦ copper (II) hydroxide - You must be able to recognize when the formula contains a polyatomic ion! ### **Ionic Nomenclature** - Write formulas: - Write names: - Iron (III) phosphate - ScS - Nickel (II) fluoride - \bullet Zn₃N₂ - Calcium sulfide - AgNO₃ - Cadmium phosphite - LiOH - Vanadium (IV) sulfate SrSO₃ - Potassium chromate - Cu(CH₃COO)₂ - Worked Ex. 2.12, 2.13 Problems 2.22, 2.23; Key Concept 2.24 ### **Acids and Bases** - Hydrogen cation (H+), also called the proton - Hydroxide anion (OH-) - Acid: substance that produces H+ in water - ♦ HCI, HNO₃, H₂SO₄, H₃PO₄ - ♦ HCl dissolves in water → H⁺ (aq) + Cl⁻ (aq) - \bullet HNO₃ in water \rightarrow H⁺ (aq) + NO₃⁻ (aq) - Base: substance that produces OH- in water - ♦ NaOH, KOH, Ba(OH)₂ - ♦ NaOH dissolves in water → Na⁺ (aq) + OH⁻ (aq) ### Binary Acids (H+ + halogen anion) - Acids produce H+ when dissolved in water - hydro-__-ic acid - Name the following acids: - HBr (aq) - HCI (aq) - HI (aq) - HF (aq) **Binary Acids** Anion Corresponding Acid F (fluoride) HF (hydrofluoric acid) Cl (chloride) HCl (hydrochloric acid) Br (bromide) HBr (hydrobromic acid) I (iodide) HI (hydroiodic acid) ### Oxoacids - Oxoacids - Name is based on the name of the oxoanion: - per- -ate per- -ic acid hypo- -ous acid - -ate - -ic acid - -ite hypo- -ite - -ous acid - Name HNO₃ (aq) - Name H₂SO₄ (aq) - Write the formula for phosphoric acid - Write the formula for phosporous acid - Worked Ex. 2.14; Problem 2.25 #### **Oxoacid Nomenclature** TABLE 2.4 Some Common Oxoacids and Their Anions Oxoacid HNO₂ Nitrous acid NO₂ Nitrite ion HNO₃ Nitric acid NO₃ Nitrate ion PO₄³⁻ SO₃²⁻ H₃PO₄ Phosphoric acid Phosphate ion H₂SO₃ Sulfurous acid Sulfite ion H₂SO₄ SO₄²⁻ Sulfate ion Sulfuric acid HCIO Hypochlorous acid CIO-Hypochlorite ion HClO₂ CIO₂-Chlorite ion HClO₃ Chloric acid ClO₃= Chlorate ion HClO₄ Perchloric acid ClO₄-Perchlorate ion Table 2-4 Chemistry, 5/e © 2008 Pearson Prentice Hall, Inc. ### Nomenclature Summary - Is the compound covalent, ionic, or acid? - If covalent, use prefixes to describe numbers of atoms. - If ionic, name metal + nonmetal-ide - ♦ Is the metal a transition metal, lead, or tin? If so, use roman numerals. - ♦ Is the nonmetal a polyatomic ion? If so, use the special name for the ion rather than the –ide ending. - If acid, is it binary or oxoacid? - ♦ If binary, use hydro-____-ic acid - ♦ If oxoacid, use oxoanion name (-ate → -ic, etc.) ### Nomenclature - diphosphorus tetroxide - XeF₄ - carbon tetrachloride - aluminum oxide - SnO₂ - PbF₂ - copper (II) nitrate - chromium (VI) oxide - H₂SO₃ (aq) - calcium carbonate - Cr₂O₃ - H₂CO₃ (aq) - iron (III) oxide - SiO₂ - TiCl₃ - sulfurous acid - P₄O₁₀ - lead (II) chromate - HBr (aq) - hydrofluoric acid Nomenclature Answers - P₂O₄ - xenon tetrafluoride - CCI₄ - Al₂O₃ - tin (IV) oxide - lead (II) fluoride - Cu(NO₃)₂ - CrO₃ - sulfurous acid - CaCO₃ - chromium (III) oxide - carbonic acid - Fe₂O₃ - silicon dioxide - titanium (III) chloride - H₂SO₃ (aq) - tetraphosphorus decoxide - PbCrO₄ - hydrobromic acid - HF (aq) 26