

- Place the following formulas into groups:
- HCI (aq)
- $\bullet SO_2$
- •CO₂
- NaBr
- H₂SO₄ (aq)
- ●H₃PO₄ (aq)
- NiCl₂ $\bullet H_2O$
- $\bullet P_2O_5$
- •BaSO₄ •CoF₃
- •KNO₃ •CH₃CH₂CH₃
- •HI (aq)

Binary Covalent Compounds: 2 Nonmetals

- Write the most metallic Mono: 1 element first
 - Di: 2
- mono

tri

hepta

nona

• Use prefixes to indicate • Tri: 3 (triathlon) number of atoms (can't use charges to balance Penta: 4 (tetris)

• Penta: 5 (pentagon)

• First element name;

- - tetra
- penta
- Hexa: 6 (hexagon)
- second element ends in Hepta: 7 • Octa: 8 (octagon)
 - Nona: 9 (nano)
 - Deca: 10 (decathlon) deca

- **Binary Covalent Compounds: 2 Nonmetals**
- Use mono to indicate 1 atom unless the first atom has only 1, then it's dropped.
 - lacktriangle SO $_3$ is sulfur trioxide
- Group Work: Write the name for NO₂
- Group Work: Write the formula for dinitrogen pentoxide

Binary Covalent Compounds: Group Work

- Write formulas for the following names:
 - ♦ silicon tetrachloride
 - ♦ carbon monoxide
 - ♦ tetraphosphorus hexaoxide
- Write names for the following formulas:
 - ♦ N₂O₄
 - ♦ Cl₂O₇
 - ♦ SF₆
- Worked Ex. 2.11; Problems 2.19, 2.20; Key Concept 2.21

Common Charges of Ions • Figure 2.11 Mg²⁺ K+ Ca²⁴ Sr2+ In³⁺ Rb+ TI+ TI3+

Practice on Ionic Charges: Group Work

- What are the common charges when atoms of the following elements become ions:
 - ♦ potassium
 - ♦ sulfur
 - ♦ chlorine
 - ♦ magnesium
 - ♦ nitrogen
 - ♦ cobalt
 - ♦ silver
 - ♦ zinc
 - ▼ ZIIIC
 - ♦ cadmium

Writing Formulas - Ionic Compounds

- The short-cut to writing formulas is similar to cross-multiplying. Cross the charge of one ion to become the number needed for the other ion.
 - \bullet Na¹⁺ and O²⁻ \rightarrow Na₂O
- Short-cut doesn't always work.
 - ◆ FeO: iron doesn't have a +1 charge, so we have to know that oxygen is usually a -2. Then we know that iron must have a +2 charge in this compound.

Writing Ionic Formulas

- Write the formulas of compounds made by the following pairs of ions.
 - Na + F
 - Na + S
 - Na + N
 - Mg + N
 - Ba + Cl Ba + O
 - Ba + O Al + Cl

Group Work

- Write neutral ionic formulas using the following pairs of ions:
 - ♦ Ba and Cl
 - ♦ Co+2 and N
 - ♦ Fe⁺³ and N
 - ♦ K and P
 - ♦ Zn and O

Metal vs Nonmetal Ions

- Metal atoms and metal ions are named the same.
 - ♦ Na: sodium
 - ♦ Na +: sodium ion
- Nonmetal atoms and nonmetal ions differ in the suffix (e.g., -ine becomes -ide)
 - ♦ F: fluorine
 - ♦ F ⁻: fluoride ion
 - ♦ N: nitrogen
 - ♦ N³-: nitride

Binary Ionic Compounds (2 elements)

- Metal cation + nonmetal anion
- NaCl
- ♦ Sodium chloride
- LiF
- ♦ Lithium fluoride
- CaBr₂
 - ♦ Calcium bromide
- Transition metals: include charge of metal in the name
 - ♦ FeCl₃: iron (III) chloride
 - ♦ CuF₂: copper (II) fluoride

Binary Ionic Compounds: Group Work

- Write formulas for the following names:
 - ♦ aluminum bromide
 - ♦ titanium(IV) chloride
 - ♦ chromium(III) sulfide
- Write names for the following formulas:
 - ♦ Ba₃N₂
 - ♦ K₂S
 - ♦ MnF₂
- Worked Ex. 2.10, Problems 2.16, 2.17

Polyatomic Ions - Oxoanions

- Most common ions (<u>KNOW</u> Tables 2.3 and 2.4, handout on my website):
 - ♦ CO₃²⁻ carbonate
 - ♦ NO₃ nitrate
 - ♦ PO₄3- phosphate
 - ♦ SO₄²⁻ sulfate
 - ♦ OH- hydroxide
 - ♦ NH₄+: ammonium

Oxoanion Nomenclature

- 1 More oxygen: per-__ -ate
- Most common: ____ -ate
- 1 Less oxygen: ___ -ite
- Still fewer: hypo-_-ite

- What is the name of NaClO?
- What is the formula for sodium chlorate?
- What is the name of FePO₄?

Nomenclature with Polyatomic Ions

- Name compounds with polyatomic ions just like binary ionic, but use the name of the polyatomic ion.
- NaNO₃
 - ♦ sodium nitrate
- K₃PO₄
 - ♦ potassium phosphate
- Cu(OH)₂
 - ♦ copper (II) hydroxide
- You must be able to recognize when the formula contains a polyatomic ion!

Ionic Nomenclature

- Write formulas:
- Write names:
- Iron (III) phosphate
- ScS
- Nickel (II) fluoride
- \bullet Zn₃N₂
- Calcium sulfide
- AgNO₃
- Cadmium phosphite

- LiOH
- Vanadium (IV) sulfate
 SrSO₃
- Potassium chromate
- Cu(CH₃COO)₂
- Worked Ex. 2.12, 2.13 Problems 2.22, 2.23; Key Concept 2.24

Acids and Bases

- Hydrogen cation (H+), also called the proton
- Hydroxide anion (OH-)
- Acid: substance that produces H+ in water
 - ♦ HCI, HNO₃, H₂SO₄, H₃PO₄
 - ♦ HCl dissolves in water → H⁺ (aq) + Cl⁻ (aq)
 - \bullet HNO₃ in water \rightarrow H⁺ (aq) + NO₃⁻ (aq)
- Base: substance that produces OH- in water
 - ♦ NaOH, KOH, Ba(OH)₂
 - ♦ NaOH dissolves in water → Na⁺ (aq) + OH⁻ (aq)

Binary Acids (H+ + halogen anion)

- Acids produce H+ when dissolved in water
- hydro-__-ic acid
- Name the following acids:
- HBr (aq)
- HCI (aq)
- HI (aq)
- HF (aq)

Binary Acids Anion Corresponding Acid F (fluoride) HF (hydrofluoric acid) Cl (chloride) HCl (hydrochloric acid) Br (bromide) HBr (hydrobromic acid) I (iodide) HI (hydroiodic acid)

Oxoacids

- Oxoacids
- Name is based on the name of the oxoanion:
 - per- -ate

per- -ic acid

hypo- -ous acid

- -ate
- -ic acid
- -ite hypo- -ite
- -ous acid
- Name HNO₃ (aq)
- Name H₂SO₄ (aq)
- Write the formula for phosphoric acid
- Write the formula for phosporous acid
- Worked Ex. 2.14; Problem 2.25

Oxoacid Nomenclature TABLE 2.4 Some Common Oxoacids and Their Anions Oxoacid HNO₂ Nitrous acid NO₂ Nitrite ion HNO₃ Nitric acid NO₃ Nitrate ion PO₄³⁻ SO₃²⁻ H₃PO₄ Phosphoric acid Phosphate ion H₂SO₃ Sulfurous acid Sulfite ion H₂SO₄ SO₄²⁻ Sulfate ion Sulfuric acid HCIO Hypochlorous acid CIO-Hypochlorite ion HClO₂ CIO₂-Chlorite ion HClO₃ Chloric acid ClO₃= Chlorate ion HClO₄ Perchloric acid ClO₄-Perchlorate ion Table 2-4 Chemistry, 5/e © 2008 Pearson Prentice Hall, Inc.

Nomenclature Summary

- Is the compound covalent, ionic, or acid?
- If covalent, use prefixes to describe numbers of atoms.
- If ionic, name metal + nonmetal-ide
 - ♦ Is the metal a transition metal, lead, or tin? If so, use roman numerals.
 - ♦ Is the nonmetal a polyatomic ion? If so, use the special name for the ion rather than the –ide ending.
- If acid, is it binary or oxoacid?
 - ♦ If binary, use hydro-____-ic acid
 - ♦ If oxoacid, use oxoanion name (-ate → -ic, etc.)

Nomenclature

- diphosphorus tetroxide
- XeF₄
- carbon tetrachloride
- aluminum oxide
- SnO₂
- PbF₂
- copper (II) nitrate
- chromium (VI) oxide
- H₂SO₃ (aq)
- calcium carbonate
- Cr₂O₃

- H₂CO₃ (aq)
- iron (III) oxide
- SiO₂
- TiCl₃
- sulfurous acid
- P₄O₁₀
- lead (II) chromate
- HBr (aq)
- hydrofluoric acid

Nomenclature Answers

- P₂O₄
- xenon tetrafluoride
- CCI₄
- Al₂O₃
- tin (IV) oxide
- lead (II) fluoride
- Cu(NO₃)₂
- CrO₃
- sulfurous acid
- CaCO₃
- chromium (III) oxide

- carbonic acid
- Fe₂O₃
- silicon dioxide
- titanium (III) chloride
- H₂SO₃ (aq)
- tetraphosphorus decoxide
- PbCrO₄
- hydrobromic acid
- HF (aq)

26