Chapter 8 - Nomenclature

8.1 Names of Atoms

Simple neutral atoms with no charge are named as is: Na is sodium atom, Ne is neon atom
\Rightarrow Know the names and symbols for elements \#1-20 and $\mathrm{Ba}, \mathrm{Co}, \mathrm{I}, \mathrm{Cu}, \mathrm{Fe}, \mathrm{Pb}, \mathrm{Hg}, \mathrm{Ag}, \mathrm{Au}, \mathrm{Zn}, \mathrm{Sn}, \mathrm{Sr}, \mathrm{Ni}, \mathrm{Br}, \mathrm{Cr}, \mathrm{Mn}, \mathrm{Cd}$

Ba barium	Cu copper	Hg mercury
Co cobalt	Fe iron	Ag silver
I iodine	Pb lead	Au gold
Zn zinc	Sn tin	Ni nickel
Br bromine	Cr chromium	Mn manganese
Cd cadmium	Sr strontium	

Definitions:

- ionic compound: metal + nonmetal(s) (eg. $\mathrm{NaCl}, \mathrm{CaBr}_{2}, \mathrm{KMnO}_{4}, \mathrm{BaSO}_{4}$)
- covalent compound: 2 or more nonmetals (eg. $\mathrm{NH}_{3}, \mathrm{CCl}_{4}$)
- monoatomic ion: charged ion from a single atom (eg Na+ $, \mathrm{Cl}^{-}, \mathrm{O}^{2-}$)
- polyatomic ion: charged ion containing 2 or more atoms (eg. $\mathrm{OH}^{-}, \mathrm{SO}_{4}{ }^{2-}$)

Charges

- All elements alone have a charge of zero in their elemental state
- Atoms get a charge and become ions when they have lost or gained electrons

CATIONS - positively charged ion resulting from a neutral metal atom losing one or more e-'s.
Fixed Charge - The charge is always the same value - based on electron configuration.
$>$ Typically group "A" representative metals.

- Group IA metals always have $a+1$ charge when they become an ion.

Example: Na^{+}is sodium ion, K^{+}is potassium ion

- Group IIA metals always have a +2 charge when they become an ion.

Example: Mg^{2+} is magnesium ion, Sr^{2+} is strontium

Ion Charge	Roman Numeral
+1	I
+2	II
+3	III
+4	IV
+5	V
+6	VI

ion

- Group IIIA metals always have a +3 charge when they become an ion.

Example: Al^{3+} is aluminum ion, Ga^{3+} is gallium ion

- Exceptions: The transition metals $\mathrm{Ag}^{+1}, \mathrm{Zn}^{2+}$, and Cd^{2+} have fixed charges.

Variable Charge - The charge can be a different value.
> Typically group " B " transition metals.

- Use a Roman Numeral to indicate the charge of the cation if there is more than one possible charge.
- Exceptions: Group A metals Sn and Pb
Sn^{2+} is tin (II) ion, Sn^{4+} is tin (IV) ion
Pb^{2+} is lead (II) ion, Pb^{4+} is lead (IV) ion

ANIONS - negatively charged ion resulting from a neutral nonmetal atom gaining one or more $\mathrm{e}^{-‘} \mathrm{~s}$.
$>$ Monatomic anions: Name changes for these anions by adding -ide ending.
$>$ Always a fixed charged - based on electron configuration

- Group VA - gain $3 \mathrm{e}^{-6}$ s to make 3- ions.

N^{3-}	nitride ion
P^{3-}	phosphide ion

- Group VIA - gain $2 \mathrm{e}^{-6}$ s to make 2- ions
$\mathrm{O}^{2-} \quad$ oxide ion
$S^{2-} \quad$ sulfide ion
- Group VIIA - gain $1 \mathrm{e}^{-}$to make 1- ions
$\mathrm{F}^{-} \quad$ fluoride ion
$\mathrm{Cl}^{-} \quad$ chloride ion
$\mathrm{Br}^{-} \quad$ bromide ion
$\mathrm{I}^{-} \quad$ iodide ion
O atom: $[\mathrm{He}] \frac{\uparrow \downarrow}{2 \mathrm{~s}} \quad \uparrow \downarrow \frac{\uparrow}{2 \mathrm{p}} \uparrow$

Oxygen gains only two electrons. The resulting oxide ion is then isoelectronic to the noble gas neon, Ne .

POLYATOMICS - two or more nonmetals covalently bonded with an overall charge.
Here is the complete list of Polyatomic Ions you are responsible for this semester:

Most Common Polyatomic Ions

$\mathrm{NH}_{4}{ }^{+}=$ammonium
$\mathrm{NO}_{3}{ }^{-}=$nitrate
$\mathrm{NO}_{2}{ }^{-}=$nitrite
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}=$acetate
$\mathrm{SO}_{4}{ }^{2-}=$ sulfate
$\mathrm{OH}^{-}=$hydroxide
$\mathrm{SO}_{3}{ }^{2-}=$ sulfite
$\mathrm{CN}^{-}=$cyanide
$\mathrm{PO}_{4}{ }^{3-}=$ phosphate
$\mathrm{MnO}_{4}^{-}=$permanganate
$\mathrm{CrO}_{4}{ }^{2-}=$ chromate
$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}=$ dichromate
$\mathrm{CO}_{3}{ }^{2-}=$ carbonate
$\mathrm{HCO}_{3}{ }^{-}=$hydrogen carbonate or bicarbonate
*These are given to you on your CHM130 Periodic Table for quizzes and exams.

8.2 Ionic Formulas

Compounds are Neutral
They have no net charge so you must have enough cations and anions to equal zero.
Na^{+}and Cl^{-}make NaCl
since +1 and $-1=0$
Na^{+}and CN^{-}make NaCN
since +1 and $-1=0$
Ba^{2+} and Cl^{-}make $\mathrm{BaCl}_{2} \quad$ since +2 and $2(-1)=0$
Al^{3+} and O^{2-} make $\mathrm{Al}_{2} \mathrm{O}_{3} \quad$ since $2(+3)$ and $3(-2)=0$ $\mathrm{Cu}(\mathrm{II})$ and Br make CuBr_{2}
since +2 and $2(-1)=0$
Polyatomic ions are just the same, remember to keep them together as a group
\Rightarrow Express more than one polyatomic ion with subscripts and parentheses.
Sr^{2+} and $\mathrm{NO}_{3}{ }^{-}$make $\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$ since +2 and $2(-1)=0$
Fe^{3+} and $\mathrm{CO}_{3}{ }^{2-}$ make $\mathrm{Fe}_{2}\left(\mathrm{CO}_{3}\right)_{3}$ since $2(+3)$ and $3(-2)=0$

8.3 Ionic Names

> The name is always the cation (usually metal) first then the anion + -ide ending.
Fixed Charge Metal: metal name + nonmetal name + "ide"
Variable Charge Metal: metal name (charge of metal) + nonmetal name + "ide"
$>$ Don' t change the name for polyatomic ions to end in ide.
$>$ For variable charge metals use a Roman Numeral to indicate the metal's charge.
How do you figure out the charge on a variable charge metal? Well you look at the anion's charge.

$\mathrm{Cu}(\mathrm{OH})_{2}$
$\mathbf{C u}^{2+}$
The overall compound has zero charge, so the Cu ion must be $2+$ to cancel the two -1 charges from the two hydroxide ions present.
> Given the formula of a compound, predict the name:

- What is the name for NaCl ?
- What is the name for $\mathrm{K}_{2} \mathrm{SO}_{4}$?
- What is the name for CuCl ?
- What is the name for FePO_{4} ?
- Name for $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$?
- Name for $\mathrm{Na}_{2} \mathrm{O}$?
sodium chloride
potassium sulfate
copper (I) chloride
iron (III) phosphate
calcium nitrate
sodium oxide
Note: Never capitalize the names of compounds!
(no Roman \# since know Na is +1) (keep the polyatomic name as is) since Cl is -1 so Cu must be +1 since PO_{4} is -3 so Fe must be +3

$>$ Given the name of a compound, predict the formula:

\Rightarrow You must know charges on ions formed by Group A main elements.
\Rightarrow Know how to use polyatomic ions given on your Periodic Table!

- lithium sulfide $\quad \mathrm{Li}_{2} \mathrm{~S}$ since Li is +1 and S is -2 you need two Li's
- calcium oxide
- iron (II) bromide
- potassium acetate
- gold (II) nitrite
- sodium iodide

CaO
FeBr_{2}
$\mathrm{KC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
$\mathrm{Au}\left(\mathrm{NO}_{2}\right)_{2}$
NaI since Ca is +2 and O is -2 you just need one of each since Fe is +2 and Br is -1 you need two Br 's since K is +1 and acetate is -1 , need one of each since Au is +2 and NO_{2} is -1 , need two nitrites since Na is +1 and I is -1 , just need one of each

8.4 Covalent Names

Molecular Compounds: compounds consisting of 2 nonmetals.
These are NOT ions, so no charges.
You are not trying to add up to zero charge with these.
Number of atoms of element indicated by Greek prefix before element name

FIRST ELEMENT
prefix (except mono) + nonmetal name

SECOND ELEMENT prefix $+2^{\text {nd }}$ nonmetal name + ide

\# of atoms	Greek prefix	\# of atoms	Greek prefix
1	mono	6	hexa
2	di	7	hepta
3	tri	8	octa
4	tetra	9	nona
5	penta	10	deca

dinitrogen tetraoxide
or
dinitrogen tetroxide

Examples:

- $\mathrm{CO}_{2}=$ carbon dioxide
- $\mathrm{PCl}_{3}=$ phosphorus trichloride
- $\mathrm{N}_{2} \mathrm{~S}_{5}=$ dinitrogen pentasulfide
- $\mathrm{SF}_{6}=$ sulfur hexafluoride
- $\mathrm{Cl}_{2} \mathrm{O}_{7}=$ dichlorine heptaoxide

Prefixes are ONLY used with molecular compounds.
Roman numerals are ONLY used with variable charged metal ionic compounds. Polyatomic ions never change their name.

CHAPTER 8 PRACTICE PROBLEMS

Example 1: Circle all the examples below that are ionic compounds.
$\begin{array}{llllllll}\mathrm{HCl} & \mathrm{K}_{2} \mathrm{O} & \mathrm{MgCl}_{2} & \mathrm{PF}_{5} & \mathrm{CuBr}_{2} & \mathrm{CaSO}_{4} & \mathrm{CH}_{2} \mathrm{O}\end{array}$
Example 2: Circle all the examples below that are covalent compounds.
HCl

$$
\mathrm{K}_{2} \mathrm{O} \quad \mathrm{MgCl}_{2}
$$

PF_{5}
CuBr_{2}
CaSO_{4}
$\mathrm{CH}_{2} \mathrm{O}$

Example 3: What ions are the following atoms most likely to make?

Example 4: What is the name for: $\mathrm{CuCl}_{2}, \mathrm{SrS}, \mathrm{NiCrO}_{4}, \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{Na}_{3} \mathrm{P}, \mathrm{ZnCO}_{3}, \mathrm{KOH}, \mathrm{Ca}(\mathrm{CN})_{2}$
Example 5: What is the formula for sodium carbonate, copper(II) bromide, strontium fluoride, iron(III) nitride, silver sulfite, nickel(II) nitrate, cadmium phosphate, ammonium hydroxide, magnesium sulfate?

Example 6: What is the name for $\mathrm{CF}_{4}, \mathrm{CO}, \mathrm{PO}_{5}, \mathrm{~N}_{2} \mathrm{~F}_{4}$? What is the formula for diphosphorus tetraiodide, tribromine octaoxide, tetraphosphorus decasulfide, carbonic acid?

Answers to Practice Problems

Example 1: Circle all the examples below that are ionic compounds. metal-nonmetal
HCl

PF_{5}

 $\mathrm{CH}_{2} \mathrm{O}$

Example 2: Circle all the examples below that are molecular compounds. nonmetals

$\mathrm{K}_{2} \mathrm{O}$
$\mathbf{M g C l}_{2}$

CaSO_{4}

Example 3:

calcium $=$	$\mathbf{C a}^{2+}$	potassium $=$	\mathbf{K}^{+}
sulfur $=$	\mathbf{S}^{2-}	aluminum $=$	$\mathbf{A l}^{3+}$
nitrogen $=$	\mathbf{N}^{3-}	chlorine $=$	$\mathbf{C l}^{-}$
silver $=$	$\mathbf{A g}^{+}$	zinc $=$	$\mathbf{Z n}^{2+}$

Example 4:	name
CuCl_{2}	copper(III) chloride
SrS	strontium sulfide
NiCrO_{4}	nickel(III) chromate
${\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}}$	magnesium nitrate
ZnCO	zinc carbonate
$\mathrm{Na}_{3} \mathrm{P}$	sodium phosphide
KOH	potassium hydroxide
$\mathrm{Ca}(\mathrm{CN})_{2}$	calcium cyanide

Example 5:	formula
sodium carbonate	$\mathbf{N a}_{2} \mathrm{CO}_{3}$
copper(II) bromide	CuBr_{2}
strontium fluoride	$\mathbf{S r F}_{2}$
iron(III) nitride	$\mathbf{F e N}$
silver sulfite	$\mathbf{A g}_{2} \mathbf{S O}_{3}$
nickel(II) nitrate	$\mathbf{N i}\left(\mathbf{N O}_{3}\right)_{2}$
cadmium phosphate	$\mathbf{C d} \mathbf{C l}_{3}\left(\mathbf{P O}_{4}\right)_{2}$
ammonium hydroxide	$\mathbf{N H}_{4} \mathbf{O H}$
magnesium sulfate	$\mathbf{M g S O}$

Example 6: carbon tetrafluoride, carbon monoxide, phosphorus pentaoxide, dinitrogen tetrafluoride, $\mathbf{P}_{2} \mathbf{I}_{4}$, $\mathrm{Br}_{3} \mathrm{O}_{8}, \mathrm{P}_{4} \mathrm{~S}_{10}, \mathrm{H}_{2} \mathrm{CO}_{3}$

