Chapter 8 – Nomenclature

<mark>8.1 Names of Atoms</mark>

Simple neutral atoms with no charge are named as is: Na is sodium atom, Ne is neon atom

 \Rightarrow Know the names and symbols for elements #1-20 and B₂ Co L Cu Ee Pb Hg Ag Au Zn Sn Sr Ni Br Cr M

and Ba, Co, I, Cu, Fe, Pb, Hg, Ag, Au, Zn, Sn, Sr, Ni, Br, Cr, Mn, Cd

Ba barium	Cu copper	Hg mercury
Co cobalt	Fe iron	Ag silver
I iodine	Pb lead	Au gold
Zn zinc	Sn tin	Ni nickel
Br bromine	Cr chromium	Mn manganese
Cd cadmium	Sr strontium	

Definitions:

- ionic compound: *metal* + *nonmetal*(*s*) (eg. NaCl, CaBr₂, KMnO₄, BaSO₄)
- covalent compound: 2 or more nonmetals (eg. NH₃, CCl₄)
- monoatomic ion: charged ion from a *single atom* (eg Na⁺, Cl⁻, O²⁻)
- polyatomic ion: charged ion containing 2 or more atoms (eg. OH⁻, SO₄²⁻)

Charges

- All elements **alone** have a charge of **zero** in their elemental state
- Atoms get a charge and become ions when they have lost or gained electrons

<u>CATIONS</u> - positively charged ion resulting from a neutral metal atom losing one or more e-'s.

Fixed Charge – The charge is always the same value – based on electron configuration.

- > Typically group "A" representative metals.
 - Group IA metals always have a +1 charge when they become an ion.
 Example: Na⁺ is sodium ion, K⁺ is potassium ion
 - Group IIA metals always have a +2 charge when they become an ion.
 Example: Mg²⁺ is magnesium ion, Sr²⁺ is strontium

Ion Charge	Roman Numeral
+1	Ι
+2	II
+3	III
+4	IV
+5	V
+6	VI

 Group IIIA metals always have a +3 charge when they become an ion. Example: Al³⁺ is aluminum ion, Ga³⁺ is gallium ion

• Exceptions: The transition metals Ag⁺¹, Zn²⁺, and Cd²⁺ have fixed charges.

Variable Charge – The charge can be a different value.

- > Typically group "B" transition metals.
 - Use a Roman Numeral to indicate the charge of the cation if there is more than one possible charge.

ion

Example: Fe can have two charges Fe^{2+} is iron (II) ion Fe^{3+} is iron (III) ion

 Exceptions: Group A metals Sn and Pb Sn²⁺ is tin (II) ion, Sn⁴⁺ is tin (IV) ion Pb²⁺ is lead (II) ion, Pb⁴⁺ is lead (IV) ion

<u>ANIONS</u> – negatively charged ion resulting from a neutral nonmetal atom gaining one or more e⁻'s.

- Monatomic anions: Name changes for these anions by adding *-ide* ending.
- > Always a fixed charged based on electron configuration
 - Group VA gain 3 e⁻'s to make 3- ions.

	N^{3-} nitride ion P^{3-} phosphide ion	O atom: [He] $\uparrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$ \uparrow \uparrow
•	$\begin{array}{llllllllllllllllllllllllllllllllllll$	O ²⁻ ion: [He] $\uparrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$
•	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Oxygen gains <i>only</i> two electrons. The resulting oxide ion is then isoelectronic to the noble gas neon, Ne.

<u>POLYATOMICS</u> – two or more nonmetals covalently bonded with an overall charge. Here is the complete list of Polyatomic Ions you are responsible for this semester:

Most Common Polyatomic Ions				
$\mathrm{NH}_{4^+} = \mathrm{ammonium}$	$NO_3^- = nitrate$ $NO_2^- = nitrite$			
$C_2H_3O_2^- = acetate$	$SO_4^{2-} = sulfate$			
$OH^{-} = hydroxide$	$SO_3^{2-} = sulfite$			
$CN^{-} = cyanide$	$PO_4^{3-} = phosphate$			
MnO_4^- = permanganate	CrO_4^{2-} = chromate			
	$Cr_2O_7^{2-}$ = dichromate			
CO_3^{2-} = carbonate				
HCO_3^- = hydrogen carbonate or bicarbonate				

*These are given to you on your <u>CHM130 Periodic Table</u> for quizzes and exams.

8.2 Ionic Formulas

Compounds are Neutral

They have no net charge so you must have enough cations and anions to equal zero.

	Na^+ and Cl^- make N	NaCl	since +1	and $-1 = 0$
	Na ⁺ and CN ⁻ make	NaCN	since +1a	nd $-1 = 0$
	Ba ²⁺ and Cl ⁻ make	BaCl ₂	since +2 a	and $2(-1) = 0$
Clark, Smith	(CC-BY-SA 4.0)	GCC CHM	1 130	Chapter 8: Nomenclature

Al^{3+} and O^{2-} make Al_2O_3	since $2(+3)$ and $3(-2) = 0$
Cu(II) and Br make CuBr ₂	since $+2$ and $2(-1) = 0$

Polyatomic ions are just the same, remember to keep them together as a group \Rightarrow Express more than one polyatomic ion with subscripts and parentheses.

 Sr^{2+} and NO_3^- make $Sr(NO_3)_2$ since +2 and 2(-1) = 0Fe³⁺ and CO_3^{2-} make $Fe_2(CO_3)_3$ since 2(+3) and 3(-2) = 0

<mark>8.3 Ionic Names</mark>

- The name is always the cation (usually metal) first then the anion + -ide ending.
 Fixed Charge Metal: metal name + nonmetal name + "ide"
 Variable Charge Metal: metal name (charge of metal) + nonmetal name + "ide"
- > *Don't* change the name for polyatomic ions to end in ide.
- > For variable charge metals use a Roman Numeral to indicate the metal's charge.

How do you figure out the charge on a variable charge metal? Well you look at the anion's charge.

The overall compound has zero charge, so the Cu ion must be 2+ to cancel the two -1 charges from the two hydroxide ions present.

Given the formula of a compound, predict the name:

there are 2 OH⁻ ions in the

• What is the name for NaCl?

formula.

- What is the name for K₂SO₄?
- What is the name for CuCl?
- What is the name for FePO₄?
- Name for Ca(NO₃)₂?
- Name for Na₂O?

potassium sulfate copper (I) chloride iron (III) phosphate calcium nitrate

sodium oxide

sodium chloride

(no Roman # since know Na is +1) (keep the polyatomic name as is) since Cl is -1 so Cu must be +1 since PO₄ is -3 so Fe must be +3

Note: Never capitalize the names of compounds!

Given the name of a compound, predict the formula:

 \Rightarrow You must know charges on ions formed by Group A main elements. \Rightarrow Know *how to use* polyatomic ions given on your Periodic Table!

• lithium sulfide	Li_2S	since Li is +1 and S is -2 you need	two Li's
• calcium oxide	CaO	since Ca is +2 and O is -2 you just	need one of each
• iron (II) bromide	FeBr ₂	since Fe is +2 and Br is -1 you need	d two Br's
 potassium acetate 	$KC_2H_3O_2$	since K is $+1$ and acetate is -1 , need	d one of each
• gold (II) nitrite	$Au(NO_2)_2$	since Au is $+2$ and NO ₂ is -1 , need	two nitrites
• sodium iodide	NaI	since Na is +1 and I is -1, just need	one of each
(CC-BY-SA 4.0)	GCC CHM 130	Chapter 8: Nomenclature	page 3

Clark, Smith

<mark>8.4 Covalent Names</mark>

Molecular Compounds: compounds consisting of 2 nonmetals.

These are **NOT ions**, so no charges.

You are not trying to add up to zero charge with these.

Number of atoms of element indicated by Greek prefix before element name

FIRST ELEMENT
<pre>prefix (except mono) + nonmetal name</pre>

# of atoms	Greek prefix	# of atoms	Greek prefix
1	mono	6	hexa
2	di	7	hepta
3	tri	8	octa
4	tetra	9	nona
5	penta	10	deca

dinitrogen tetraoxide or dinitrogen tetroxide

Examples:

- CO_2 = carbon dioxide
- $PCl_3 =$ phosphorus trichloride
- N_2S_5 = dinitrogen pentasulfide
- $SF_6 =$ sulfur hexafluoride
- $Cl_2O_7 = dichlorine heptaoxide$

Prefixes are ONLY used with molecular compounds. Roman numerals are ONLY used with variable charged metal ionic compounds. Polyatomic ions never change their name.

 \odot

CHAPTER 8 PRACTICE PROBLEMS

Example 1:	Circle all the examples below that are ionic compounds.						
	HCl	K_2O	MgCl ₂	PF ₅	CuBr ₂	CaSO ₄	CH ₂ O
Example 2:	Circle a	Ill the exa	amples belo	w that ar	e covalent c	ompounds.	
	HCl	K ₂ O	MgCl ₂	PF ₅	CuBr ₂	CaSO ₄	CH ₂ O

Example 3: What ions are the following atoms most likely to make?

calcium =	 potassium =	
sulfur =	 aluminum =	
nitrogen =	 chlorine =	
silver =	 zinc =	

Example 4: What is the name for: CuCl₂, SrS, NiCrO₄, Mg(NO₃)₂, Na₃P, ZnCO₃, KOH, Ca(CN)₂

Example 5: What is the formula for sodium carbonate, copper(II) bromide, strontium fluoride, iron(III) nitride, silver sulfite, nickel(II) nitrate, cadmium phosphate, ammonium hydroxide, magnesium sulfate?

Example 6: What is the name for CF₄, CO, PO₅, N₂F₄? What is the formula for diphosphorus tetraiodide, tribromine octaoxide, tetraphosphorus decasulfide, carbonic acid?

Example 6: carbon tetrafluoride, carbon monoxide, phosphorus pentaoxide, dinitrogen tetrafluoride, P2I4, Br3O8, P4S10, H2CO3

page 5