Chapter 9 – Acids & Bases

9.1 Arrhenius Acids and Bases

• Arrhenius Acid: substance that produces H⁺ ions in aqueous solutions.

$$HCl(aq) \rightarrow H^{+}(aq) + Cl^{-}(aq)$$

o Arrhenius Base: substance that produces OH- ions in aqueous solutions.

NaOH (aq)
$$\rightarrow$$
 Na⁺ (aq) + OH⁻ (aq)

PROPERTIES OF ACIDS AND BASES

Properties of Arrhenius Acids	Properties of Arrhenius Bases	
 Produce H⁺ ions in water 	 Produce OH⁻ ions in water 	
■ Taste sour	Taste bitter	
 Act corrosive 	Feel slippery	
 Turn blue litmus turns red 	 Turn red litmus turn blue 	

Neutralization Reactions

 \Rightarrow Some acid base reactions look like this: ACID + BASE \rightarrow SALT + H₂O

$$HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H2O(l)$$

Salt - ionic compound formed during acid-base neutralization reaction.

Example: For the reaction: $2HNO_3$ (aq) + $Ca(OH)_2$ (aq) $\rightarrow 2H_2O$ (1) + $Ca(NO_3)_2$ (aq) _____ is the Arrhenius acid, and _____ is the Arrhenius base. (Answer: HNO_3 is the acid, $Ca(OH)_2$ is the base)

9.2 Bronsted-Lowry Acids and Bases

Bronsted-Lowry acid-base reactions involve a transfer of a proton (H⁺) from an acid to a base.

- Bronsted Lowry Acid: proton donor (loses H⁺)
- <u>Bronsted Lowry Base:</u> proton acceptor (gains H⁺)
 - ✓ This definition allows for a broader range of bases to be included.

Examples: 1) HCl (aq) + H₂O (l)
$$\rightarrow$$
 H₃O⁺ (aq) + Cl⁻ (aq)

$$2) \quad NH_3 \ (aq) \ + \ HBr \ (aq) \ \rightarrow \ NH_4^+ \ (aq) \ + \ Br^{\text{-}} \ (aq)$$

(Answers: 1. HCl is BLA, H₂O is BLB; 2. NH₃ is BLB, HBr is BLA)

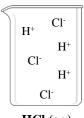
9.3 Strong Acids and Bases

⇒ Strong acids ionize almost completely (~100%) in water: HCl, HNO₃, H₂SO₄

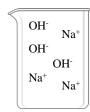
$$HCl(aq) \rightarrow H^{+}(aq) + Cl^{-}(aq)$$

Almost all the HCl molecules break apart to form H⁺ ions and Cl⁻ ions ✓ 100 % of acid molecules have ionized

HCl = hydrochloric acid, HNO₃ = nitric acid, H₂SO₄ = sulfuric acid


⇒ Strong bases dissociate almost completely (~100%) to form ions: KOH, NaOH

$$NaOH (aq) \rightarrow Na^{+}(aq) + OH^{-}(aq)$$


Almost all the NaOH units break apart and dissociate completely 100% to form ions

KOH = potassium hydroxide, NaOH = sodium hydroxide

Examples:

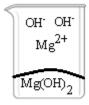
NaOH (aq)

9.4 Weak Acids and Bases

⇒ Weak acids ionize very little (~1-5 %) in water: HF, H₂CO₃, H₃PO₄, HC₂H₃O₂

$$HC_2H_3O_2$$
 (aq) \leftrightarrows H^+ (aq) $+$ $C_2H_3O_2^-$ (aq)

Most of the HC₂H₃O₂ molecules do not break apart to form ions ✓ only ~ 1 % of the acid molecules have ionized


HF = hydrofluoric acid, $H_2CO_3 = carbonic acid$, $H_3PO_4 = phosphoric acid$, $HC_2H_3O_2 = acetic acid$

⇒ Weak bases dissociate very little (~1-5%) so just a few ions are formed: Mg(OH)₂ Name is magnesium hydroxide

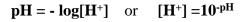
$$Mg(OH)_2(s) \leftrightarrows Mg^{2+}(aq) + 2OH^{-}(aq)$$

Examples:

Mg(OH) 2 (aq)

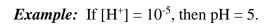
9.5 pH Scale

pH scale: expresses H⁺ concentrations on a scale that ranges from 0 -14.

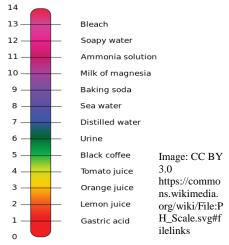

A pH value indicates how acidic or basic a solution is:

Acidic: pH < 7

Neutral: pH= 7


Basic: pH > 7

 \Rightarrow The following formula gives the relationship between [H⁺] and pH:



[] means concentration or molarity in units of moles / liter

- $[H^+]$ = the moles / Liter of H^+ ions
- [OH⁻] = the moles / Liter of OH⁻ ions
 - \circ In pure water, $[H^+] = [OH^-]$
 - o In acidic solution [H⁺] >[OH⁻]
 - o In basic solution [H⁺] <[OH⁻]

Example: If $[H^+] = 0.0001$, then pH = ?

To find the pH make sure to convert the concentration to scientific notation:

Express 0.0001 in scientific notation: $[H^+] = 10^{-4}$ so pH = 4

9.6 Buffers

Buffer: A solution that resists changes in pH when a small amount of an acid or base is added.

- ⇒ Buffer systems are very important for maintaining the pH of biological fluids.
- ⇒ blood pH needs to stay around a pH value of 7.4 or death can result.

9.7 Solubility Rules

Solubility: An amount of solute that can dissolve in a given amount of solvent.

- ⇒ Solubility rules are for an ionic solid placed in water at 25°C.
 - **Soluble**: The ionic compound dissolves completely.
 - The ionic compound is given the designation aqueous (aq) as its physical state.
 - **Insoluble**: The ionic compound does not dissolve much only a very small percent dissolves.
 - The ionic compound is given the designation solid (s) as its physical state.

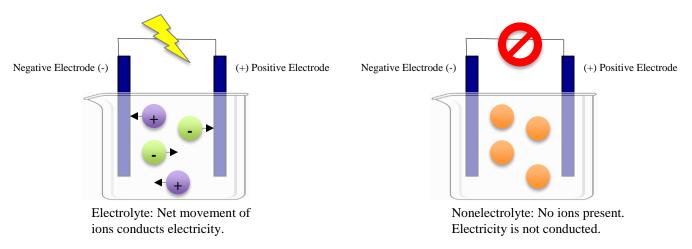
Solubility Rules

Generally **soluble** compounds with:

- 1. Li⁺, Na⁺, K⁺, NH₄⁺ (**ALWAYS!**)
- 2. acetate ion $(C_2H_3O_2^-)$
- 3. nitrate ion (NO₃⁻)
- 4. halide ions (X): Cl⁻, Br⁻, and I⁻ BUT AgX, HgX₂, PbX₂ are all **insoluble**
- 5. sulfate ion (SO₄²-), BUT CaSO₄, SrSO₄, BaSO₄, Ag₂SO₄, PbSO₄ are all **insoluble**

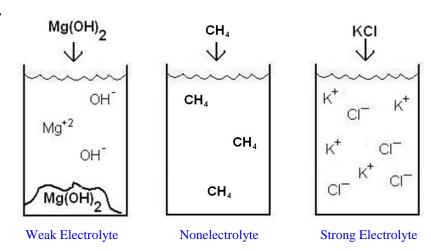
Generally **insoluble** compounds with:

- 6. carbonate ion (CO_3^{2-})
- 7. chromate ion (CrO_4^{2-})
- 8. phosphate ion (PO_4^{3-})
- 9. sulfide ion (S^{2-}) BUT CaS, SrS, BaS are all soluble
- 10. hydroxide (OH⁻), BUT Ca(OH)₂, Sr(OH)₂, Ba(OH)₂, are all **soluble**


Example:

Determine if the following are soluble or insoluble in water and write the correct physical state next to each:

1.	Na_2S	 soluble	insoluble
2.	$Al(OH)_3$	 soluble	insoluble
3.	AgBr	 soluble	insoluble
4.	CaCO ₃	 soluble	insoluble
5.	KNO_3	 soluble	insoluble


9.8 Electrolytes

Electrolyte: A substance that once dissolved in water, conducts electricity by the net movement of ions.

- **Strong electrolyte** a solution that is a good conductor of electricity.
 - Substance that totally dissociates or ionizes in water. (All ions)
 - ➤ Soluble ionic compounds (e.g. NaCl, KBr, LiNO₃, NaC₂H₃O₂)
 - > Strong acids (e.g. HCl, HBr, HNO₃, HI)
 - > Strong bases (e.g. NaOH, KOH, LiOH, Ca(OH)₂)
- **Weak Electrolyte** solution that conducts electricity poorly.
 - Substance partially ionizes in water (few ions)
 - ➤ Insoluble ionic compounds (e.g. AgCl, Ca₃(PO₄)₂)
 - ➤ Weak acids (e.g. HF, H₂CO₃)
 - Weak bases (e.g. NH₃, Mg(OH)₂)
- o **Nonelectrolyte** solution that does not conduct electricity.
 - Neutral molecules are present in solution. (**No ions!**)
 - ➤ Molecular compounds such as H₂O, C₆H₁₂O₆ (sugar), I₂

Examples:

BE ABLE to DRAW BEAKERS of WATER with ELECTROLYTES in THEM

NaCl http://www.youtube.com/watch?v=aELPrWzixeU

HCl vs acetic acid http://www.youtube.com/watch?v=NdG3wK9kNcg&feature=related
Strong vs weak base http://www.youtube.com/watch?v=Av1LUAPN5q8&feature=related
Strong vs weak acid http://www.youtube.com/watch?v=kcPjY9cQpWs&feature=related

For Fun

- Blood pH needs to be between 7.35 and 7.45
- Maintained by CO₂ / HCO₃ buffer system
 - -Breathing can affect change in this system in seconds
- Acidosis is excess acid. Results in heavy breathing, weakness, headache, coma, and pH < 6.8=death.
- Alkalosis is excess base. Results in convulsions, muscular weakness, and pH>7.8 = death
- Partial pressure of CO₂ normal is 35-45 mmHg
- High PCO2 means acidosis (lots of CO2 in blood)
- Low PCO2 means alkalosis (little CO2 in blood)
- Buffer rxn: $CO_2 + H_2O \iff H_2CO_3 \iff H^+ + HCO_3^-$

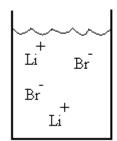
 \odot

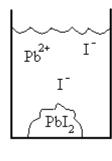
CHAPTER 9 PRACTICE PROBLEMS

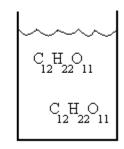
1. Are the following acidic, basic or neutral?

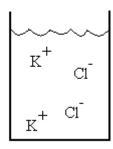
$$pH = 3$$
, $pH = 7$, $pH = 11$, $pH = 1$

- 2. Indicate the Arrhenius acid and base in each of the following reactions:
 - a. $2 \text{ HNO}_3(aq) + \text{Ca}(OH)_2(aq) \rightarrow 2 \text{ H}_2O(1) + \text{Ca}(NO_3)_2(aq)$
 - b. $HI(aq) + KOH(aq) \rightarrow H_2O(1) + KI(aq)$


Clark, Smith (CC-BY-SA 4.0) GCC CHM 130 Chapter 9: Acids & Bases page 5


- 3. Indicate the Brønsted-Lowry acid and base in each of the following reactions:
 - A) $H_2O(1) + NH_3(aq) \leftrightarrows$ NH_4^+ (aq) + OH^- (aq)
 - B) HSO_3^- (aq) + HNO₃ (aq) H_2SO_3 (aq) + NO_3^- (aq) \rightarrow
 - C) $H_2PO_4^-(aq) + H_2SO_4(aq) \rightarrow$ $H_3PO_4 (aq) + HSO_4^- (aq)$
- 4. A) [H⁺]=0.00001 M means pH = _____
 - B) [H⁺]=0.000001 M means pH = _____
 - C) $[H^+] = 10^{-10} \text{ M}$ means $pH = \underline{\hspace{1cm}}$
- 5. Classify these as non-, weak, or strong electrolytes and draw them in a beaker of water.


LiBr, PbI₂, C₁₂H₂₂O₁₁, KCl


Answers to Practice Problems

- 1. 3 is acidic, 7 is neutral, 11 is basic, 1 is acidic
- 2. a. $acid = HNO_3$ and $base = Ca(OH)_2$ b. acid = HI and base = KOH
- 3. A) acid = H_2O , base = NH_3 , B) acid = HNO_3 , base = HSO_3^-
 - C) acid = H_2SO_4 , base = $H_2PO_4^-$
- 4. a) pH = 5, B) pH = 6, C) pH = 10
- 5. LiBr is strong, PbI₂ is weak, C₁₂H₂₂O₁₁ is non, KCl is strong

