Chapter 9 – Acids & Bases ### 9.1 Arrhenius Acids and Bases • Arrhenius Acid: substance that produces H⁺ ions in aqueous solutions. $$HCl(aq) \rightarrow H^{+}(aq) + Cl^{-}(aq)$$ o Arrhenius Base: substance that produces OH- ions in aqueous solutions. NaOH (aq) $$\rightarrow$$ Na⁺ (aq) + OH⁻ (aq) ### PROPERTIES OF ACIDS AND BASES | Properties of Arrhenius Acids | Properties of Arrhenius Bases | | |---|--|--| | Produce H⁺ ions in water | Produce OH⁻ ions in water | | | ■ Taste sour | Taste bitter | | | Act corrosive | Feel slippery | | | Turn blue litmus turns red | Turn red litmus turn blue | | #### **Neutralization Reactions** \Rightarrow Some acid base reactions look like this: ACID + BASE \rightarrow SALT + H₂O $$HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H2O(l)$$ **Salt** - ionic compound formed during acid-base neutralization reaction. **Example:** For the reaction: $2HNO_3$ (aq) + $Ca(OH)_2$ (aq) $\rightarrow 2H_2O$ (1) + $Ca(NO_3)_2$ (aq) _____ is the Arrhenius acid, and _____ is the Arrhenius base. (Answer: HNO_3 is the acid, $Ca(OH)_2$ is the base) ### 9.2 Bronsted-Lowry Acids and Bases Bronsted-Lowry acid-base reactions involve a transfer of a proton (H⁺) from an acid to a base. - Bronsted Lowry Acid: proton donor (loses H⁺) - <u>Bronsted Lowry Base:</u> proton acceptor (gains H⁺) - ✓ This definition allows for a broader range of bases to be included. *Examples: 1*) HCl (aq) + H₂O (l) $$\rightarrow$$ H₃O⁺ (aq) + Cl⁻ (aq) $$2) \quad NH_3 \ (aq) \ + \ HBr \ (aq) \ \rightarrow \ NH_4^+ \ (aq) \ + \ Br^{\text{-}} \ (aq)$$ (Answers: 1. HCl is BLA, H₂O is BLB; 2. NH₃ is BLB, HBr is BLA) ### 9.3 Strong Acids and Bases ⇒ Strong acids ionize almost completely (~100%) in water: HCl, HNO₃, H₂SO₄ $$HCl(aq) \rightarrow H^{+}(aq) + Cl^{-}(aq)$$ Almost all the HCl molecules break apart to form H⁺ ions and Cl⁻ ions ✓ 100 % of acid molecules have ionized HCl = hydrochloric acid, HNO₃ = nitric acid, H₂SO₄ = sulfuric acid ⇒ Strong bases dissociate almost completely (~100%) to form ions: KOH, NaOH $$NaOH (aq) \rightarrow Na^{+}(aq) + OH^{-}(aq)$$ Almost all the NaOH units break apart and dissociate completely 100% to form ions KOH = potassium hydroxide, NaOH = sodium hydroxide #### Examples: NaOH (aq) ### 9.4 Weak Acids and Bases ⇒ Weak acids ionize very little (~1-5 %) in water: HF, H₂CO₃, H₃PO₄, HC₂H₃O₂ $$HC_2H_3O_2$$ (aq) \leftrightarrows H^+ (aq) $+$ $C_2H_3O_2^-$ (aq) Most of the HC₂H₃O₂ molecules do not break apart to form ions ✓ only ~ 1 % of the acid molecules have ionized HF = hydrofluoric acid, $H_2CO_3 = carbonic acid$, $H_3PO_4 = phosphoric acid$, $HC_2H_3O_2 = acetic acid$ ⇒ Weak bases dissociate very little (~1-5%) so just a few ions are formed: Mg(OH)₂ Name is magnesium hydroxide $$Mg(OH)_2(s) \leftrightarrows Mg^{2+}(aq) + 2OH^{-}(aq)$$ #### Examples: Mg(OH) 2 (aq) ### 9.5 pH Scale **pH scale**: expresses H⁺ concentrations on a scale that ranges from 0 -14. A pH value indicates how acidic or basic a solution is: Acidic: pH < 7 Neutral: pH= 7 Basic: pH > 7 \Rightarrow The following formula gives the relationship between [H⁺] and pH: [] means concentration or molarity in units of moles / liter - $[H^+]$ = the moles / Liter of H^+ ions - [OH⁻] = the moles / Liter of OH⁻ ions - \circ In pure water, $[H^+] = [OH^-]$ - o In acidic solution [H⁺] >[OH⁻] - o In basic solution [H⁺] <[OH⁻] **Example:** If $[H^+] = 0.0001$, then pH = ? To find the pH make sure to convert the concentration to scientific notation: Express 0.0001 in scientific notation: $[H^+] = 10^{-4}$ so pH = 4 ### 9.6 Buffers **Buffer:** A solution that resists changes in pH when a small amount of an acid or base is added. - ⇒ Buffer systems are very important for maintaining the pH of biological fluids. - ⇒ blood pH needs to stay around a pH value of 7.4 or death can result. ### 9.7 Solubility Rules **Solubility:** An amount of solute that can dissolve in a given amount of solvent. - ⇒ Solubility rules are for an ionic solid placed in water at 25°C. - **Soluble**: The ionic compound dissolves completely. - The ionic compound is given the designation aqueous (aq) as its physical state. - **Insoluble**: The ionic compound does not dissolve much only a very small percent dissolves. - The ionic compound is given the designation solid (s) as its physical state. ## **Solubility Rules** Generally **soluble** compounds with: - 1. Li⁺, Na⁺, K⁺, NH₄⁺ (**ALWAYS!**) - 2. acetate ion $(C_2H_3O_2^-)$ - 3. nitrate ion (NO₃⁻) - 4. halide ions (X): Cl⁻, Br⁻, and I⁻ BUT AgX, HgX₂, PbX₂ are all **insoluble** - 5. sulfate ion (SO₄²-), BUT CaSO₄, SrSO₄, BaSO₄, Ag₂SO₄, PbSO₄ are all **insoluble** Generally **insoluble** compounds with: - 6. carbonate ion (CO_3^{2-}) - 7. chromate ion (CrO_4^{2-}) - 8. phosphate ion (PO_4^{3-}) - 9. sulfide ion (S^{2-}) BUT CaS, SrS, BaS are all soluble - 10. hydroxide (OH⁻), BUT Ca(OH)₂, Sr(OH)₂, Ba(OH)₂, are all **soluble** #### Example: Determine if the following are soluble or insoluble in water and write the correct physical state next to each: | 1. | Na_2S |
soluble | insoluble | |----|-------------------|-------------|-----------| | 2. | $Al(OH)_3$ |
soluble | insoluble | | 3. | AgBr |
soluble | insoluble | | 4. | CaCO ₃ |
soluble | insoluble | | 5. | KNO_3 |
soluble | insoluble | ### 9.8 Electrolytes **Electrolyte:** A substance that once dissolved in water, conducts electricity by the net movement of ions. - **Strong electrolyte** a solution that is a good conductor of electricity. - Substance that totally dissociates or ionizes in water. (All ions) - ➤ Soluble ionic compounds (e.g. NaCl, KBr, LiNO₃, NaC₂H₃O₂) - > Strong acids (e.g. HCl, HBr, HNO₃, HI) - > Strong bases (e.g. NaOH, KOH, LiOH, Ca(OH)₂) - **Weak Electrolyte** solution that conducts electricity poorly. - Substance partially ionizes in water (few ions) - ➤ Insoluble ionic compounds (e.g. AgCl, Ca₃(PO₄)₂) - ➤ Weak acids (e.g. HF, H₂CO₃) - Weak bases (e.g. NH₃, Mg(OH)₂) - o **Nonelectrolyte** solution that does not conduct electricity. - Neutral molecules are present in solution. (**No ions!**) - ➤ Molecular compounds such as H₂O, C₆H₁₂O₆ (sugar), I₂ ### Examples: #### BE ABLE to DRAW BEAKERS of WATER with ELECTROLYTES in THEM NaCl http://www.youtube.com/watch?v=aELPrWzixeU HCl vs acetic acid http://www.youtube.com/watch?v=NdG3wK9kNcg&feature=related Strong vs weak base http://www.youtube.com/watch?v=Av1LUAPN5q8&feature=related Strong vs weak acid http://www.youtube.com/watch?v=kcPjY9cQpWs&feature=related #### For Fun - Blood pH needs to be between 7.35 and 7.45 - Maintained by CO₂ / HCO₃ buffer system - -Breathing can affect change in this system in seconds - Acidosis is excess acid. Results in heavy breathing, weakness, headache, coma, and pH < 6.8=death. - Alkalosis is excess base. Results in convulsions, muscular weakness, and pH>7.8 = death - Partial pressure of CO₂ normal is 35-45 mmHg - High PCO2 means acidosis (lots of CO2 in blood) - Low PCO2 means alkalosis (little CO2 in blood) - Buffer rxn: $CO_2 + H_2O \iff H_2CO_3 \iff H^+ + HCO_3^-$ \odot ### **CHAPTER 9 PRACTICE PROBLEMS** 1. Are the following acidic, basic or neutral? $$pH = 3$$, $pH = 7$, $pH = 11$, $pH = 1$ - 2. Indicate the Arrhenius acid and base in each of the following reactions: - a. $2 \text{ HNO}_3(aq) + \text{Ca}(OH)_2(aq) \rightarrow 2 \text{ H}_2O(1) + \text{Ca}(NO_3)_2(aq)$ - b. $HI(aq) + KOH(aq) \rightarrow H_2O(1) + KI(aq)$ Clark, Smith (CC-BY-SA 4.0) GCC CHM 130 Chapter 9: Acids & Bases page 5 - 3. Indicate the Brønsted-Lowry acid and base in each of the following reactions: - A) $H_2O(1) + NH_3(aq) \leftrightarrows$ NH_4^+ (aq) + OH^- (aq) - B) HSO_3^- (aq) + HNO₃ (aq) H_2SO_3 (aq) + NO_3^- (aq) \rightarrow - C) $H_2PO_4^-(aq) + H_2SO_4(aq) \rightarrow$ $H_3PO_4 (aq) + HSO_4^- (aq)$ - 4. A) [H⁺]=0.00001 M means pH = _____ - B) [H⁺]=0.000001 M means pH = _____ - C) $[H^+] = 10^{-10} \text{ M}$ means $pH = \underline{\hspace{1cm}}$ - 5. Classify these as non-, weak, or strong electrolytes and draw them in a beaker of water. LiBr, PbI₂, C₁₂H₂₂O₁₁, KCl ### **Answers to Practice Problems** - 1. 3 is acidic, 7 is neutral, 11 is basic, 1 is acidic - 2. a. $acid = HNO_3$ and $base = Ca(OH)_2$ b. acid = HI and base = KOH - 3. A) acid = H_2O , base = NH_3 , B) acid = HNO_3 , base = HSO_3^- - C) acid = H_2SO_4 , base = $H_2PO_4^-$ - 4. a) pH = 5, B) pH = 6, C) pH = 10 - 5. LiBr is strong, PbI₂ is weak, C₁₂H₂₂O₁₁ is non, KCl is strong