

Sample Exam 3 – Chapters 8, 9, 10

Show ALL work for FULL credit!!

- 1. Which of the following substances crystallizes as a molecular solid?
 - a. NaCl
 - b. CO_2
 - c. Au
 - $d. \quad K_2CO_3$
 - e. CaO
- 2. Circle <u>ALL</u> of the IMF's present for each of the following substances:

- 3. Which of the following properties indicates the presence of weak intermolecular forces in a liquid?
 - a. a high boiling point
 - b. a high vapor pressure
 - c. a high viscosity
 - d. a high surface tension
- 4. Which of the following should have the highest boiling point at a given temperature?
 - a. methane, CH₄
 - b. carbon tetrafluoride, CF₄
 - c. carbon tetrachloride, CCl₄
 - d. carbon tetrabromide, CBr₄
 - e. carbon tetraiodide, CI4
- 5. Refer to the phase diagram provided to answer the following questions:
 - a. What is the normal boiling point for this substance? 105°C
 - b. What is the physical state for this substance at 1.5 atm and 150°C? liquid
 - c. Circle the vaporization curve on the phase diagram below.

6. Calculate the heat of reaction, ΔH° , for the reaction:

 $3 \text{ NO}_{2 (g)} + \text{H}_{2}\text{O}_{(l)} \rightarrow 2 \text{ HNO}_{3 (aq)} + \text{NO}_{(g)}$

Substance:	NO _{2(g)}	H ₂ O (l)	HNO _{3 (aq)}	NO (g)
$\Delta H^{\circ}_{f}(kJ/mol)$	33.2	-285.5	-119.0	91.3

 $\Delta H^{o}_{rxn} = 39.2 \text{ kJ}$

7. Determine the amount of heat released when 26.9 mL methanol, CH_3OH (density = 0.792 g/mL), reacts according to the following combustion equation:

 $2 \text{ CH}_{3}\text{OH}_{(l)} + 3 \text{ O}_{2 (g)} \rightarrow 2 \text{ CO}_{2 (g)} + 4 \text{ H}_{2}\text{O}_{(l)} \qquad \Delta \text{H}^{\circ}_{rxn} = -1452.8 \text{ kJ/mol}$

 $\Delta H^{o}_{rxn} = -483 \text{ kJ}$

8. Use the given average bond dissociation energies to estimate ΔH for the reaction of methane, $CH_4(g)$, with fluorine:

$\underline{\qquad} CH_4(g) + \underline{\qquad} F_2(g) \rightarrow \underline{\qquad} CF_4(g) + \underline{\qquad} H_2(g)$	Bond	E _{BDE} , kJ/mol
	H-H	436
	C-F	450
$\Delta H^{o}_{rxn} = -716 \text{ kJ}$	С-Н	410
	F-F	158

9. List the following ionic compounds in order of *increasing* lattice energy: Li₃P, Sr₃P₂, Mg₃P₂, AlP,

 $Lowest \ LE \ _Li_3P_ > _Sr_3P_2 > _Mg_3P_2 > _AlP_ > Highest \ LE$

- 10. Which of the following equations represents a heat of formation equation?
 - a. $C(s) + O_2(g) \rightarrow CO_2(g)$
 - b. $2 \operatorname{Au}(s) + 3 \operatorname{Cl}_2(g) \rightarrow 2 \operatorname{AuCl}_3(s)$
 - c. $Cl(g) + Na(s) \rightarrow NaCl(s)$
 - d. CaO (s) + CO₂ (g) \rightarrow CaCO₃ (s)
- 11. What type of bond typically has the highest bond enthalpy value?
 - a. single
 - b. double
 - c. triple
 - d. all three have the same value for bond enthalpy
- 12. Which of the following has a standard enthalpy of a formation value ($\Delta H_{\rm f}^{\circ}$) of zero?

 $H_2O(l)$ $O_3(g)$ $Br_2(l)$ O(g) $CO_2(s)$

13. Which ionic compound is ta. CaO	he most stable? b. K ₂ O	c. SrO	d. Rb ₂ O	
14. When bonds are broken in a. exothermic	a chemical reaction, the b. endothermic	his process is conside	red	
	$BaO_{(s)} + CO_{2(g)}$ $(g) \rightarrow 2 BaO_{(s)}$ $(g) + \frac{1}{2}O_{2(g)} \rightarrow BaCO$		H = -1107.0 kJ H = -822.5 kJ <mark>.0 kJ</mark>	
16. Which one of the following a. number of moles	g is not used to describ b. polarity		-	olume
 17. Boyle's Law states that pre a. directly related to v b. inversely related to c. directly related to te d. inversely related to 	olume <mark>volume</mark> emperature			
18. A basketball is inflated to a basketball outside where th a. 1.37 atm			are constant)	ure of the d. 1.64 atm
19. Which of the following wo a. Ar	uld have a density of b. N ₂	1.21 g/L at 280.15°C c. Ne	and 0.993 atm?	d. O ₂
20. What is the total pressure in 303 K?	n a 3.00 L container c	ontaining 0.310 moles	s of N_2 and 0.250	mole of O ₂ at
	b. 4.55×10^{-4} atm	c. 0.215 a	tm	d. 1.00 atm
21. Which of the following gas a. CO ₂	tes has the highest ave b. N_2O_4	erage speed at 400K? c. F ₂		d. SF ₆
22. A process by which gas mo	blecules escape throug	sh a tiny hole in a mer	nbrane into a vac	uum without
collisions is called a. Boyle's law.	b. diffusion.	c. sublima	ation.	d. effusion.
23. Of the following statementa. Gases are highly compreseb. There are relatively largec. Gases form homogeneousd. All of the above.	ssible. e distances between ga	as molecules in a cont	ainer.	
24. The specific capacity heat of 4.689 kJ, what will be the f a. 356 °C b. 3	inal temperature of th		per, initially at 2: d. 27.8 °C	5°C, absorbs
25. What mass of chlorine gas		tainer at 55.6°C and 8	87 torr?	

25. What mass of chlorine gas occupies a 4.50L container at 55.6°C and 887 torr? PV=nRT solve for n = 0.19468 moles Cl₂ Now use molar mass to get grams = 13.8 gCl₂ 26. What volume of hydrogen gas is produced when 6.75 g of aluminum is placed in excess 4.0 M HCl at 33.8 °C and 956.4 torr according to the equation 2Al(s) + 6HCl(aq) → 3H₂(g) + 2AlCl₃(aq)?
6.75 g Al(1 mol Al)(3 mol H₂) = 0.375 mol H₂
(26.98 g Al)(2 mol Al)

PV=nRT V = $\frac{nRT}{P} = \frac{(0.375 \text{ mol } \text{H}_2)(0.08206 \text{ L atm mol}^{-1} \text{ K}^{-1})(306.95\text{ K})}{(1.2584 \text{ atm})} = 7.51 \text{ L}$

27. How much heat is absorbed when 30.00 g of C (s) reacts in the presence of excess SO_2 (g) to produce CS_2 (l) and CO (g) according to the following chemical equation?

 $5 C (s) + 2 SO_2 (g) \rightarrow CS_2 (l) + 4 CO (g) \Delta H^\circ = +239.9 kJ$ 30.00 g C (1 mol C)(239.9 kJ)= 119.9 kJ (12.011 g C)(5 mol C)

28. Which of the following would exhibit dipole-dipole forces as the strongest force between molecules?a. HCNb. CCl ₄ c. CH ₃ OHd. C ₆ H ₆					
29. Which of the following will have the lowest boiling point? a. CH ₃ CH ₂ CH ₂ NH ₂ b. CH ₃ CH ₂ CH ₂ SH c. CH ₃ CH ₂ CH ₂ OH					
30. Solid carbon dioxide, CO ₂ (a. molecular		solid? etallic			
31. What type of intermolecular force, IMF, would be present between molecules in a sample of Br2 (l)?a. LDFb. DDFc. HBFd. Ion-Dipole Forces					
 32. What is the strongest IMF present between like molecules in a sample of H₂S (1)? a. LDF b. DDF c. HBF d. Ion-Dipole Forces 					
33. What type of bond is presena. nonpolar covalent	t between atoms in a sample ob. polar covalent	of CO ₂ ? c. LDF	d. James		
 34. Hexane, C₆H₁₂, is an organic molecule found in gasoline. Circle the property of liquids that would have a relatively high value for hexane. a. vapor pressure b. surface tension c. boiling point d. viscosity 					
35. Which molecule will have that I_2	he highest boiling point? b. Br ₂	c. Cl ₂	d. F ₂		
36. Select the correct molecule with the lowest surface tension.a. CH_3CH_2CH_2Clb. CH_3CH_2CH_2NH_2c. CH_3CH_2CH_2CH_3					
 37. Select the molecule that has HBF as it's strongest IMF between like molecules. a. CH₃CH₂CH₂SH b. CH₃CH₂CH₂OH c. CH₃CH₂OCH₂CH₃ 					
38. What is the strongest force present between like particles in a sample of liquid mercury, Hg (l)?a. London Dispersion Forcesb. Jonia Bonds					

- b. Ionic Bonds
- c. Covalent Bonds
- d. Metallic Bonds