\qquad
\qquad

Sample Exam 3 - Chapters 8, 9, 10

Show ALL work for FULL credit!!

1. Which of the following substances crystallizes as a molecular solid?
a. NaCl
b. CO_{2}
c. Au
d. $\mathrm{K}_{2} \mathrm{CO}_{3}$
e. CaO
2. Circle ALL of the IMF's present for each of the following substances:

A.

B.

LDF DDF HBF

C.

LDF DDF HBF

D.

LDF DDF HBF
3. Which of the following properties indicates the presence of weak intermolecular forces in a liquid?
a. a high boiling point
b. a high vapor pressure
c. a high viscosity
d. a high surface tension
4. Which of the following should have the highest boiling point at a given temperature?
a. methane, CH_{4}
b. carbon tetrafluoride, CF_{4}
c. carbon tetrachloride, CCl_{4}
d. carbon tetrabromide, CBr_{4}
e. carbon tetraiodide, CI_{4}
5. Refer to the phase diagram provided to answer the following questions:
a. What is the normal boiling point for this substance? $105^{\circ} \mathrm{C}$
b. What is the physical state for this substance at 1.5 atm and $150^{\circ} \mathrm{C}$? liquid
c. Circle the vaporization curve on the phase diagram below.

6. Calculate the heat of reaction, $\Delta \mathrm{H}^{\circ}$, for the reaction:

$$
\begin{aligned}
& 3 \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}{ }_{(\mathrm{l})} \rightarrow 2 \mathrm{HNO}_{3(\mathrm{aq})}+\mathrm{NO}_{(\mathrm{g})} \\
& \qquad \begin{array}{|l|l|l|l|l|}
\hline \text { Substance: } & \mathrm{NO}_{2(\mathrm{~g})} & \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} & \mathrm{HNO}_{3(\mathrm{aq})} & \mathrm{NO}_{(\mathrm{g})} \\
\hline \Delta \mathrm{H}_{\mathrm{f}}^{\circ}(\mathrm{kJ} / \mathrm{mol}) & 33.2 & -285.5 & -119.0 & 91.3 \\
\hline
\end{array}
\end{aligned}
$$

$\Delta \mathrm{H}_{\mathrm{rxn}}^{\mathrm{o}}=39.2 \mathrm{~kJ}$
7. Determine the amount of heat released when 26.9 mL methanol, $\mathrm{CH}_{3} \mathrm{OH}$ (density $=0.792 \mathrm{~g} / \mathrm{mL}$), reacts according to the following combustion equation:

$$
2 \mathrm{CH}_{3} \mathrm{OH}_{(\mathrm{l})}+3 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \quad \Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}=-1452.8 \mathrm{~kJ} / \mathrm{mol}
$$

$\Delta \mathrm{H}_{\mathrm{rxn}}^{\mathrm{o}}=-483 \mathrm{~kJ}$
8. Use the given average bond dissociation energies to estimate ΔH for the reaction of methane, $\mathrm{CH}_{4}(\mathrm{~g})$, with fluorine:

$\mathrm{CH}_{4}(\mathrm{~g})$	$\mathrm{CF}_{4}(\mathrm{~g})+\ldots 2$ _ $\mathrm{H}_{2}(\mathrm{~g})$	Bond	$\mathrm{E}_{\text {BDE }}, \mathrm{kJ} / \mathrm{mol}$
		H-H	436
		C-F	450
$\Delta \mathrm{H}_{\mathrm{rxn}}^{\mathrm{o}}=-716 \mathrm{k}$		C-H	410
		F-F	158

9. List the following ionic compounds in order of increasing lattice energy:

$$
\mathrm{Li}_{3} \mathrm{P}, \mathrm{Sr}_{3} \mathrm{P}_{2}, \mathrm{Mg}_{3} \mathrm{P}_{2}, \mathrm{AlP},
$$

10. Which of the following equations represents a heat of formation equation?
a. $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
b. $2 \mathrm{Au}(\mathrm{s})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{AuCl}_{3}(\mathrm{~s})$
c. $\mathrm{Cl}(\mathrm{g})+\mathrm{Na}(\mathrm{s}) \rightarrow \mathrm{NaCl}(\mathrm{s})$
d. $\mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})$
11. What type of bond typically has the highest bond enthalpy value?
a. single
b. double
c. triple
d. all three have the same value for bond enthalpy
12. Which of the following has a standard enthalpy of a formation value $\left(\Delta H_{\mathrm{f}}{ }^{\circ}\right)$ of zero?
$\mathrm{H}_{2} \mathrm{O}$ (l)
$\mathrm{O}_{3}(\mathrm{~g})$
Br_{2} (1)
O (g)
CO_{2} (s)
13. Which ionic compound is the most stable?
a. CaO
b. $\mathrm{K}_{2} \mathrm{O}$
c. SrO
d. $\mathrm{Rb}_{2} \mathrm{O}$
14. When bonds are broken in a chemical reaction, this process is considered \qquad .
a. exothermic
b. endothermic
15. Find $\Delta \mathrm{H}$ for $\mathbf{B a C O}_{3}{ }_{(s)} \rightarrow \mathbf{B a O}{ }_{(s)}+\mathbf{C O}_{2}(g)$ $\begin{array}{ll}\text { given } & 2 \mathrm{Ba}_{(s)}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{BaO}_{(\mathrm{s})} \\ & \mathrm{Ba}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{BaCO}_{3(\mathrm{~g})}\end{array}$

$$
\Delta \mathrm{H}=-1107.0 \mathrm{~kJ}
$$

$$
\Delta \mathrm{H}=-822.5 \mathrm{~kJ}
$$

$$
\Delta \mathrm{H}=269.0 \mathrm{~kJ}
$$

16. Which one of the following is not used to describe the condition of a gas?
a. number of moles
b. polarity
c. temperature
d. volume
17. Boyle's Law states that pressure is
a. directly related to volume
b. inversely related to volume
c. directly related to temperature
d. inversely related to temperature
18. A basketball is inflated to a pressure of 1.50 atm in a $20.0^{\circ} \mathrm{C}$ garage. What is the pressure of the basketball outside where the temperature is $-5.0^{\circ} \mathrm{C}$? (Assume V and n are constant)
a. $\quad 1.37 \mathrm{~atm}$
b. 1.42 atm
c. 1.58 atm
d. 1.64 atm
19. Which of the following would have a density of $1.21 \mathrm{~g} / \mathrm{L}$ at $280.15^{\circ} \mathrm{C}$ and 0.993 atm ?
a. Ar
b. N_{2}
c. Ne
d. O_{2}
20. What is the total pressure in a 3.00 L container containing 0.310 moles of N_{2} and 0.250 mole of O_{2} at 303 K ?
a. 4.64 atm
b. $4.55 \times 10^{-4} \mathrm{~atm}$
c. 0.215 atm
d. 1.00 atm
21. Which of the following gases has the highest average speed at 400 K ?
a. CO_{2}
b. $\mathrm{N}_{2} \mathrm{O}_{4}$
c. F_{2}
d. SF_{6}
22. A process by which gas molecules escape through a tiny hole in a membrane into a vacuum without collisions is called
a. Boyle's law.
b. diffusion.
c. sublimation.
d. effusion.
23. Of the following statements, which describes properties of an ideal gas?
a. Gases are highly compressible.
b. There are relatively large distances between gas molecules in a container.
c. Gases form homogeneous mixtures and do not react with other gas molecules.
d. All of the above.
24. The specific capacity heat of copper is $0.385 \mathrm{~J} /\left(\mathrm{g}^{\circ} \mathrm{C}\right)$. If 34.2 g of copper, initially at $25^{\circ} \mathrm{C}$, absorbs 4.689 kJ , what will be the final temperature of the copper?
a. $356{ }^{\circ} \mathrm{C}$
b. $381{ }^{\circ} \mathrm{C}$
c. $25.4^{\circ} \mathrm{C}$
d. $27.8^{\circ} \mathrm{C}$
25. What mass of chlorine gas occupies a 4.50 L container at $55.6^{\circ} \mathrm{C}$ and 887 torr?
$\mathrm{PV}=\mathrm{nRT}$ solve for $\mathrm{n}=0.19468$ moles $\mathrm{Cl}_{2} \quad$ Now use molar mass to get grams $=13.8 \mathrm{gCl}_{2}$
26. What volume of hydrogen gas is produced when 6.75 g of aluminum is placed in excess 4.0 M HCl at $33.8{ }^{\circ} \mathrm{C}$ and 956.4 torr according to the equation $2 \mathrm{Al}(s)+6 \mathrm{HCl}(a q) \rightarrow 3 \mathrm{H}_{2}(g)+2 \mathrm{AlCl}_{3}(a q)$?
$6.75 \mathrm{~g} \mathrm{Al}(1 \mathrm{~mol} \mathrm{Al})\left(3 \mathrm{~mol} \mathrm{H}_{2}\right)=0.375 \mathrm{~mol} \mathrm{H}_{2}$
$(26.98 \mathrm{~g} \mathrm{Al})(2 \mathrm{~mol} \mathrm{Al})$
$\mathrm{PV}=\mathrm{nRT} \quad \mathrm{V}=\frac{\mathrm{nRT}}{\mathrm{P}}=\frac{\left(0.375 \mathrm{~mol} \mathrm{H}_{2}\right)\left(0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(306.95 \mathrm{~K})}{(1.2584 \mathrm{~atm})}=7.51 \mathrm{~L}$
27. How much heat is absorbed when 30.00 g of $\mathrm{C}(\mathrm{s})$ reacts in the presence of excess $\mathrm{SO}_{2}(\mathrm{~g})$ to produce $\mathrm{CS}_{2}(\mathrm{l})$ and $\mathrm{CO}(\mathrm{g})$ according to the following chemical equation?

$$
5 \mathrm{C}(\mathrm{~s})+2 \mathrm{SO}_{2}(\mathrm{~g}) \rightarrow \mathrm{CS}_{2}(\mathrm{l})+4 \mathrm{CO}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=+239.9 \mathrm{~kJ}
$$

$30.00 \mathrm{~g} \mathrm{C} \frac{(1 \mathrm{~mol} \mathrm{C})(239.9 \mathrm{~kJ})}{(12.011 \mathrm{~g} \mathrm{C})(5 \mathrm{~mol} \mathrm{C})}=119.9 \mathrm{~kJ}$
28. Which of the following would exhibit dipole-dipole forces as the strongest force between molecules?
a. HCN
b. CCl_{4}
c. $\mathrm{CH}_{3} \mathrm{OH}$
d. $\mathrm{C}_{6} \mathrm{H}_{6}$
29. Which of the following will have the lowest boiling point?
a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
b. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SH}$
c. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
30. Solid carbon dioxide, $\mathrm{CO}_{2}(\mathrm{~s})$, is what type of crystalline solid?
a. molecular
b. ionic
c. metallic
31. What type of intermolecular force, IMF, would be present between molecules in a sample of Br_{2} (1)?
a. LDF
b. DDF
c. HBF
d. Ion-Dipole Forces
32. What is the strongest IMF present between like molecules in a sample of $\mathrm{H}_{2} \mathrm{~S}(\mathrm{l})$?
a. LDF
b. DDF
c. HBF
d. Ion-Dipole Forces
33. What type of bond is present between atoms in a sample of CO_{2} ?
a. nonpolar covalent
b. polar covalent
c. LDF
d. James
34. Hexane, $\mathrm{C}_{6} \mathrm{H}_{12}$, is an organic molecule found in gasoline. Circle the property of liquids that would have a relatively high value for hexane.
a. vapor pressure
b. surface tension
c. boiling point
d. viscosity
35. Which molecule will have the highest boiling point?
a. I_{2}
b. Br_{2}
c. Cl_{2}
d. F_{2}
36. Select the correct molecule with the lowest surface tension.
a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$
b. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
c. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
37. Select the molecule that has HBF as it's strongest IMF between like molecules.
a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SH}$
b. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
c. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3}$
38. What is the strongest force present between like particles in a sample of liquid mercury, $\mathrm{Hg}(\mathrm{l})$?
a. London Dispersion Forces
b. Ionic Bonds
c. Covalent Bonds
d. Metallic Bonds

