

Sample Exam 3 – Chapters 8, 9, 10

Show ALL work for FULL credit!!

- 1. Which of the following substances crystallizes as a molecular solid?
 - a. NaCl
 - b. CO₂
 - c. Au
 - d. K₂CO₃
 - e. CaO
- 2. Circle **ALL** of the IMF's present for each of the following substances:

- 3. Which of the following properties indicates the presence of weak intermolecular forces in a liquid?
 - a. a high boiling point
 - b. a high vapor pressure
 - c. a high viscosity
 - d. a high surface tension
- 4. Which of the following should have the highest boiling point at a given temperature?
 - a. methane, CH₄
 - b. carbon tetrafluoride, CF₄
 - c. carbon tetrachloride, CCl₄
 - d. carbon tetrabromide, CBr₄
 - e. carbon tetraiodide, CI₄
- 5. Refer to the phase diagram provided to answer the following questions:
 - a. What is the normal boiling point for this substance?
 - b. What is the physical state for this substance at 1.5 atm and 150°C?
 - c. Circle the vaporization curve on the phase diagram below.

6. Calculate the heat of reaction, ΔH° , for the reaction:

$$3~NO_{2~(g)} + H_2O_{~(l)} \rightarrow 2~HNO_{3~(aq)} + NO_{~(g)}$$

Substance:	NO _{2(g)}	H ₂ O (l)	HNO _{3 (aq)}	NO (g)	
$\Delta \text{H}^{\circ}_{\text{f}}(\text{kJ/mol})$	33.2	-285.5	-119.0	91.3	

7. Determine the amount of heat released when 26.9 mL methanol, CH_3OH (density = 0.792 g/mL), reacts according to the following combustion equation:

$$2~CH_{3}OH_{~(l)}~+~3~O_{2~(g)}~\rightarrow 2~CO_{2~(g)}~+~4~H_{2}O_{~(l)}$$

$$\Delta H^{\circ}_{rxn} = -1452.8 \text{ kJ/mol}$$

8. Use the given average bond dissociation energies to estimate ΔH for the reaction of methane, $CH_4(g)$, with fluorine:

$$\underline{\hspace{1cm}} CH_{4}\left(g\right) \; + \; \underline{\hspace{1cm}} F_{2}\left(g\right) \; \to \; \underline{\hspace{1cm}} CF_{4}\left(g\right) \; + \; \underline{\hspace{1cm}} H_{2}\left(g\right)$$

Bond	E_{BDE} , kJ/mol
Н-Н	436
C-F	450
С-Н	410
F-F	158

9. List the following ionic compounds in order of *increasing* lattice energy:

Lowest LE ____ > ___ > Highest LE

10. Which of the following equations represents a heat of formation equation?

a.
$$C(s) + O_2(g) \rightarrow CO_2(g)$$

b.
$$2 \text{ Au (s)} + 3 \text{ Cl}_2(g) \rightarrow 2 \text{ AuCl}_3(s)$$

c.
$$Cl(g) + Na(s) \rightarrow NaCl(s)$$

d.
$$CaO(s) + CO_2(g) \rightarrow CaCO_3(s)$$

11. What type of bond typically has the highest bond enthalpy value?

- a. single
- b. double
- c. triple
- d. all three have the same value for bond enthalpy

12. Which of the following has a standard enthalpy of a formation value ($\Delta H_{\rm f}^{\circ}$) of zero?

$$H_2O(1)$$

$$O_3(g)$$

$$Br_2(1)$$

13. Which ionic compound is a. CaO	s the most stable? b. K ₂ O	c. SrO	d. Rb ₂	O
14. When bonds are broken i a. exothermic	n a chemical reaction b. endothermic	, this process is con	sidered	·
	$\begin{array}{l} \mathbf{BaO}_{(s)} + \mathbf{CO}_{2(g)} \\ \mathbf{O}_{2(g)} \rightarrow 2 \mathbf{BaO}_{(s)} \\ \mathbf{O}_{2(g)} + \frac{1}{2} \mathbf{O}_{2(g)} \rightarrow \mathbf{BaO}_{(g)} \end{array}$	CO _{3 (g)}	$\Delta H = -1107.0$ $\Delta H = -822.5 \text{ k}$	
16. Which one of the following a. number of moles	ng is not used to desc b. polari		of a gas? nperature	d. volume
17. Boyle's Law states that p a. directly related to b. inversely related to c. directly related to d. inversely related to	volume o volume temperature			
18. A basketball is inflated to basketball outside where a. 1.37 atm	-		nd n are constar	
19. Which of the following wa. Ar	yould have a density of b. N ₂	of 1.21 g/L at 280.1 c. Ne		d. O ₂
20. What is the total pressure 303 K?	in a 3.00 L container	containing 0.310 n	noles of N ₂ and	0.250 mole of O_2 at
a. 4.64 atm	b. 4.55x10 ⁻⁴ atm	c. 0.2	15 atm	d. 1.00 atm
21. Which of the following g a. CO_2	ases has the highest a b. N_2O_4	average speed at 400 c. F ₂	OK?	d. SF ₆
22. A process by which gas r collisions is called	-			
a. Boyle's law.	b. diffusion.	c. sub	olimation.	d. effusion.
23. Of the following statemer a. Gases are highly comp b. There are relatively lar c. Gases form homogened d. All of the above.	ressible. ge distances between	gas molecules in a	container.	
24. The specific capacity hea 4.689 kJ, what will be the a. 356 °C b.	e final temperature of		copper, initially	
25. What mass of chlorine ga			nd 887 torr?	

26.		_		_		_		_	ted in excess $I_2(g) + 2AI$		
27.		d CO (g) ac	cording to	_	ving chem	nical equ	ation?		excess SO ₂ 9 kJ	(g) to	produce
28.	Which of a. HO		_	exhibit dip . CCl4	ole-dipole	e forces c. CH		trongest t	force betwee d. C		elecules?
29.		the following CH ₂ CH ₂ N	-	ve the low	_	g point? I ₃ CH ₂ CH	H ₂ SH	C	c. CH ₃ CH ₂ C	CH ₂ O	Н
30.		on dioxide, olecular		is what typ o. ionic	e of crysta	alline so c. met					
31.	What type a. LE		lecular for b. DDF	rce, IMF, v	would be p	•	oetween		es in a samp Dipole Force		Br ₂ (l)?
32.	What is th	e strongest)F	IMF pres b. DDF	ent betwee	n like mol c. HB		n a sam		S (1)? Dipole Force	es	
33.		of bond is oppolar cova	-		ms in a sa olar coval		CO ₂ ?	c. LDF		d.	James
34.	a relatively	C ₆ H ₁₂ , is an y high value por pressure	e for hexa		_	soline.		he proper ling point			would have viscosity
35.	Which mo	lecule will		highest boi . Br ₂	ling point	?	c. Cl ₂			d.	F_2
36.		correct model I ₃ CH ₂ CH ₂ C			st surface CH ₃ CH ₂ CI			c. CH ₃ C	CH ₂ CH ₂ CH ₃	}	
37.		molecule tl I ₃ CH ₂ CH ₂ S			trongest II CH ₃ CH ₂ CI		veen lik		iles. CH ₂ OCH ₂ CI	H_3	
38.	a. Lob. Iorc. Co	e strongest ndon Dispe nic Bonds valent Bon etallic Bond	ersion For ds		en like pai	rticles in	a samp	ole of liqu	aid mercury	, Hg (1)?