## CHM 130 Acids, Bases, and Electrolytes Worksheet

1. Name 3 strong acids and write their formulas. What makes an acid strong?
2. Name 4 weak acids and write their formulas. What makes an acid weak?
3. Name 2 strong bases and write their formulas. What makes a base strong?
4. Name 1 weak base and write its formula. What makes a base weak?
5. Identify the Arrhenius acid and base in the following reactions:
a. $\mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{KOH}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{LiNO}_{3}(\mathrm{aq})$
b. $2 \mathrm{HBr}(\mathrm{aq})+\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CaBr}_{2}(\mathrm{aq})$
c. $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{LiOH}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{LiC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})$
6. What is the pH for these solutions? Is the solution acidic, basic, or neutral?
a. $\left[\mathrm{H}^{+}\right]=10^{-9} \quad \mathrm{pH}=$ $\qquad$
b. $\left[\mathrm{H}^{+}\right]=10^{-4} \quad \mathrm{pH}=$ $\qquad$
c. $\left[\mathrm{H}^{+}\right]=0.0001 \quad \mathrm{pH}=$ $\qquad$
d. $\left[\mathrm{H}^{+}\right]=0.0000000001 \quad \mathrm{pH}=$ $\qquad$
7. What is the definition of a buffer solution?
8. Identify the Bronsted Lowry acid and base in the following reactions:
a. $\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{HClO}_{4}(\mathrm{aq}) \rightarrow \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{ClO}_{4}^{-}(\mathrm{aq})$
b. $\mathrm{HCl}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{NH}_{2}(\mathrm{aq}) \rightarrow \mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}(\mathrm{aq})$
9. Draw a picture of the following in beakers of water: $\mathrm{NaBr}, \mathrm{Mg}(\mathrm{OH})_{2}, \mathrm{~K}_{2} \mathrm{~S}, \mathrm{HNO}_{3}$, and $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$.
10. Are the following strong, weak, or non-electrolytes?
a. $\mathrm{PbSO}_{4}$
b. $\quad \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
c. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
d. $\mathrm{Srl}_{2}$
e. $\mathrm{Cu}(\mathrm{OH})_{2}$
f. $\mathrm{CH}_{3} \mathrm{OH}$
g. $\mathrm{K}_{2} \mathrm{CrO}_{4}$
h. $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{3}$
i. $\mathrm{Ba}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$
j. $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$

## Answers:

1. Name 3 strong acids and write their formulas. What makes an acid strong?
hydrochloric acid HCl , nitric acid $\mathrm{HNO}_{3}$, sulfuric acid $\mathrm{H}_{2} \mathrm{SO}_{4}$. Strong means $100 \%$ ionized, all the $\mathrm{H}^{+}$ions have broken off the acid molecule in water. It exists as all ions.
2. Name 4 weak acids and write their formulas. What makes an acid weak?
hydrofluoric acid HF, phosphoric acid $\mathrm{H}_{3} \mathrm{PO}_{4}$, carbonic acid $\mathrm{H}_{2} \mathrm{CO}_{3}$, acetic acid $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
Weak means very little ionized like 1-5\%. Few $\mathrm{H}^{+}$ions have come off the acid molecule in water. Few ions
3. Name 2 strong bases and write their formulas. What makes a base strong?
potassium hydroxide KOH , sodium hydroxide NaOH . Strong means $100 \%$ dissociated, all the $\mathrm{OH}^{-}$ions have broken off the base in water. It exists as all ions.
4. Name 1 weak base and write its formula. What makes a base weak?
magnesium hydroxide $\mathrm{Mg}(\mathrm{OH})_{2}$. Weak means 1-5\% dissociated. Few ions. Most stays together.
5. Identify the Arrhenius acid and base in the following reactions:
a. $\mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{KOH}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{LiNO}_{3}(\mathrm{aq})$
acid base
b. $2 \mathrm{HBr}(\mathrm{aq})+\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CaBr}_{2}(\mathrm{aq})$
acid base
c. $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{LiOH}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{LiC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})$
acid base
6. What is the pH for these solutions? Is the solution acidic, basic, or neutral?
a. $\left[\mathrm{H}^{+}\right]=10^{-9} \quad \mathrm{pH}=\quad 9 \quad$ basic
b. $\left[\mathrm{H}^{+}\right]=10^{-4} \quad \mathrm{pH}=\ldots \quad 4 \quad$ acidic
c. $\left[\mathrm{H}^{+}\right]=0.0001 \quad \mathrm{pH}=\ldots \quad 4 \_$___acidic
d. $\left[\mathrm{H}^{+}\right]=0.0000000001 \quad \mathrm{pH}=\ldots \quad 10 \_$__basic
7. What is the definition of a buffer solution?

A solution that keeps pH constant, resists a change in pH .
8. Identify the Bronsted Lowry acid and base in the following reactions:
a. $\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{HClO}_{4}(\mathrm{aq}) \rightarrow \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{ClO}_{4}{ }^{-}(\mathrm{aq})$
base acid
b. $\mathrm{HCl}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{NH}_{2}(\mathrm{aq}) \rightarrow \mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{NH}_{3}^{+}(\mathrm{aq})$
acid base
9. Draw a picture of the following in beakers of water: $\mathrm{NaBr}, \mathrm{Mg}(\mathrm{OH})_{2}, \mathrm{~K}_{2} \mathrm{~S}, \mathrm{HNO}_{3}$, and $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$.

10. Are the following strong, weak, or non-electrolytes?
a. $\mathrm{PbSO}_{4}$ weak
b. $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ strong
c. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ non
d. $\mathrm{Srl}_{2}$ strong
e. $\mathrm{Cu}(\mathrm{OH})_{2}$ weak
f. $\mathrm{CH}_{3} \mathrm{OH}$ non
g. $\mathrm{K}_{2} \mathrm{CrO}_{4}$ strong
h. $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{3}$ strong
i. $\mathrm{Ba}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$ strong
j. $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ weak

