CHM 130 Gas Worksheet

Pressure Conversions

A. Convert 557 mm Hg to atm, torr, and psi given $1 \mathrm{~atm}=760$ torr $=760 \mathrm{~mm} \mathrm{Hg}=14.7 \mathrm{psi}$
B. Convert 1.345 atm to torr and psi

Combined Gas Law and Ideal Gas Law

1) If I initially have a gas at a pressure of 12.0 atm, a volume of 23.0 liters, and a temperature of 200.0 K , and then I raise the pressure to 14.0 atm and increase the temperature to 300.0 K , what is the new volume of the gas?
2) A gas takes up a volume of 17.0 liters, has a pressure of 2.30 atm , and a temperature of 299 K . If I raise the temperature to 350.0 K and lower the pressure to 1.50 atm , what is the new volume of the gas?
3) A gas that has a volume of 28 liters, a temperature of $45^{\circ} \mathrm{C}$, and an unknown pressure has its volume increased to 34 liters and its temperature decreased to $35^{\circ} \mathrm{C}$. If I measure the pressure after the change to be 2.0 atm , what was the original pressure of the gas?
4) A gas has a temperature of $14^{\circ} \mathrm{C}$, and a volume of 4.5 liters. If the temperature is raised to $29{ }^{\circ} \mathrm{C}$ and the pressure is not changed, what is the new volume of the gas?
5) If I have 17.0 liters of gas at a temperature of $67.0^{\circ} \mathrm{C}$ and a pressure of 88.89 atm , what will be the pressure of the gas if I raise the temperature to $94.0^{\circ} \mathrm{C}$ and decrease the volume to 12.0 liters?
6) I have an unknown volume of gas at a pressure of 0.500 atm and a temperature of 325 K . If I raise the pressure to 1.20 atm , decrease the temperature to 320.0 K , and measure the final volume to be 48.0 liters, what was the initial volume of the gas?
7) If I have 21.0 liters of gas held at a pressure of 78.0 atm and a temperature of 900.0 K , what will be the volume of the gas if I decrease the pressure to 45.0 atm and decrease the temperature to 750.0 K ?
8) If I have 2.9 L of gas at a pressure of 5.0 atm and a temperature $50.0^{\circ} \mathrm{C}$, what will be the temperature of the gas if I decrease the volume of the gas to 2.4 L and decrease the pressure to 3.0 atm ?
9) I have an unknown volume of gas held at a temperature of 115 K in a container with a pressure of 60.0 atm . If by increasing the temperature to 225 K and decreasing the pressure to 30.0 atm causes the volume of the gas to be 29 liters, how many liters of gas did I start with?
10) What is the pressure of 0.525 moles of gas at $35.0^{\circ} \mathrm{C}$ in a 9.00 L container?
11) What is the volume of 1.25 moles of gas at $47.2^{\circ} \mathrm{C}$ and 1.25 atm ?
12) What is the temperature of 0.750 moles of gas at 25.0 L and 1.18 atm ?

Answers

A. $557 \mathrm{~mm} \mathrm{Hg}=557$ torr since they are the same. $557 \mathrm{torr}(1 \mathrm{~atm} / 760 \mathrm{torr})=0.733 \mathrm{~atm}$ $0.733 \mathrm{~atm}(14.7 \mathrm{psi} / 1 \mathrm{~atm})=10.8 \mathrm{psi}$
B. $1.345 \mathrm{~atm}(760 \mathrm{torr} / 1 \mathrm{~atm})=1022$ torr $\quad 1.345 \mathrm{~atm}(14.7 \mathrm{psi} / 1 \mathrm{~atm})=19.77 \mathrm{psi}$

1) $\quad 29.6 \mathrm{~L}$
2) $\quad 30.5 \mathrm{~L}$
3) 2.5 atm
4) 4.7 L
5) 136 atm
6) $\quad\left(\frac{0.500 \mathrm{~atm} V_{1}}{325 \mathrm{~K}}\right)=\left(\frac{1.20 \mathrm{~atm} \times 48.0 \mathrm{~L}}{320.0 \mathrm{~K}}\right)$ solve for $\mathrm{V}_{1}=117 \mathrm{~L}$
7) $\quad\left(\frac{78.0 \mathrm{~atm} \times 21.0 \mathrm{~L}}{900.0 \mathrm{~K}}\right)=\left(\frac{V_{2} 45.0 \mathrm{~atm}}{750.0 \mathrm{~K}}\right) \quad$ solve for $\mathrm{V}_{2}=30.3 \mathrm{~L}$
8) 160 K
9) $\quad 7.4 \mathrm{~L}$
10) Nothing is changing use ideal gas law. Solve for $P=n R T / V$

$$
\mathrm{P}=(0.525 \mathrm{~mol})\left(0.08206 \frac{\mathrm{Latm}}{\mathrm{~mol} \mathrm{~K}}\right)(308 \mathrm{~K}) / 9.00 \mathrm{~L}=1.47 \mathrm{~atm}
$$

11) Nothing is changing use ideal gas law. Solve for $V=n R T / P$

$$
\mathrm{V}=(1.25 \mathrm{~mol})\left(0.08206 \frac{\mathrm{Latm}}{\mathrm{~mol} \mathrm{~K}}\right)(320.2 \mathrm{~K}) / 1.25 \mathrm{~atm}=26.3 \mathrm{~L}
$$

12) Nothing is changing use ideal gas law. Solve for $T=P V / n R$

$$
\mathrm{T}=(1.18 \mathrm{~atm})(25.0 \mathrm{~L}) /(0.750 \mathrm{~mol})\left(0.08206 \frac{\mathrm{Latm}}{\mathrm{~mol} \mathrm{~K}}\right)=479 \mathrm{~K}
$$

