IMF – Intermolecular Forces Worksheet

Indicate the **strongest** IMF holding together **thousands of molecules** of the following. Then indicate what type of bonding is holding the atoms together in **one molecule** of the following. NOTE – if the molecule is an ionic compound, then there is no IMF, the ions are all held together by ionic bonds.

		IMF			Bonding			
		London forces	Dipole-dipole forces	Hydrogen Bonding Forces	Ionic Bonds	Polar Covalent Bonds	Nonpolar Covalent Bonds	
1.	NH ₃							
2.	K ₂ S							
3.	HC1							
4.	F ₂							
5.	PCl ₃							
6.	NaCl							
7.	SO_2							
8.	CO ₂							
9.	I ₂							
10.	CH ₄							
11.	CH ₃ Cl							
12.	HF							
13.	H ₂ O							
14.	NO							
15.	H ₂							
16.	CaO							
17.	O ₂							
18.	CH ₃ OH							
19.	СО							
20.	N ₂							

Answer the following questions with dipole dipole forces, H bonding forces, London forces, ion dipole forces, ionic bond, polar covalent bond, or nonpolar covalent bond.

- 1. What holds molecules of water together?
- 2. What hold the O and H atoms together in a molecule of water?
- 3. What holds Na^+ and Cl^- ions together in salt?
- 4. What holds NaCl(aq) together in salt water?
- 5. What holds the two F atoms together in diatomic fluorine?
- 6. What holds molecules of fluorine together?
- 7. What holds KBr(aq) together?
- 8. What holds the C and H atoms together in methane, CH₄?
- 9. What hold methane molecules with each other?
- 10. What holds the C and O atoms together in carbon monoxide?
- 11. What holds five molecules of carbon monoxide together?

Now let us compare two liquids and their properties. Consider benzene, C₆H₆, and phenol, C₆H₅OH:

- 1. Which has the stronger IMF?
- 2. Which has the lower vapor pressure?
- 3. Which has the higher boiling point?
- 4. Which has the lower viscosity?
- 5. Which has the higher surface tension?
- 6. Which one can H bond?
- 7. Which one has only London dispersion forces?

IMF – Intermolecular Forces Key

Indicate the **strongest** IMF holding together **several molecules** of the following. Then indicate what type of bonding is holding the atoms together in **one molecule** of the following. NOTE – if the molecule is an ionic compound, then there is no IMF, the ions are all held together by ionic bonds.

		IMF			Bonding			
		London forces	Dipole-dipole forces	Hydrogen Bonding Forces	lonic Bonds	Polar Covalent Bonds	Nonpolar Covalent Bonds	
1.	NH ₃			X		X		
2.	K ₂ S				X			
3.	HCl		X			X		
4.	F ₂	X					X	
5.	PCl ₃		X			X		
6.	NaCl				X			
7.	SO ₂		X			X		
8.	CO ₂	X				X		
9.	I ₂	X					X	
10.	CH ₄	X					X	
11.	CH ₃ Cl		X			X (C-CI)	Х (С-Н)	
12.	HF			X		X		
13.	H ₂ O			X		X		
14.	NO		X			X		
15.	H ₂	X					X	
16.	CaO				X			
17.	O ₂	X					X	
18.	CH ₃ OH			X		Х (О-Н)	Х (С-Н)	
19.	СО		X			X		
20.	N_2	X					X	

Answer the following questions with dipole dipole forces, H bonding forces, London forces, ion dipole forces, ionic bond, polar covalent bond, or nonpolar covalent bond.

- 1. What holds molecules of water together? **H bonding force**
- 2. What hold the O and H atoms together in a molecule of water? Polar cov bonds
- 3. What holds Na^+ and Cl^- ions together in salt? lonic bonds
- 4. What holds NaCl(aq) together in salt water? lon dipole force
- 5. What holds the two F atoms together in diatomic fluorine? Nonpolar cov bond
- 6. What holds molecules of fluorine together? London force
- 7. What holds KBr(aq) together? lon dipole force
- 8. What holds the C and H atoms together in methane, CH₄? Nonpolar cov bond
- 9. What hold methane molecules with each other? London force
- 10. What holds the C and O atoms together in carbon monoxide? Polar cov bond
- 11. What holds five molecules of carbon monoxide together? Dipole dipole force

Now let us compare two liquids and their properties. Consider benzene, C₆H₆, and phenol, C₆H₅OH:

- 1. Which has the stronger IMF? **phenol**
- 2. Which has the lower vapor pressure? **phenol**
- 3. Which has the higher boiling point? phenol
- 4. Which has the lower viscosity? benzene
- 5. Which has the higher surface tension? **phenol**
- 6. Which one can H bond? phenol
- 7. Which one has only London dispersion forces? benzene