Worksheet on Moles

Three conversions to remember about chemicals - usually used when we are asking about just one chemical:

1. How many atoms are in 40.08 grams of calcium?
2. One mole of magnesium would contain how many atoms?
3. How many atoms are in 5.55 moles of silver?
4. How many moles are in 5.55×10^{33} molecules of $\mathrm{H}_{2} \mathrm{SO}_{4}$?
5. What is the molar mass of sodium carbonate?
6. What is the molar mass of nickel(III) sulfate?
7. How many moles are in 88.88 grams of calcium?
8. How many grams is 1.25 moles of potassium bromide?
9. 3.50 grams of gold would contain how many atoms?
10. How many liters is 0.975 moles of laughing gas at STP?
11. How many liters is 3.59×10^{19} atoms of argon gas at STP?
12. What is the percent oxygen in sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$?
13. What is the percent hydrogen in water?

Answers

1. 40.08 grams of calcium is one mole (see Periodic Table), and one mole is 6.02×10^{23} atoms.
2. One mole of anything is 6.02×10^{23}, so it is $6.02 \times 10^{23} \mathrm{Mg}$ atoms.
3. $5.55 \mathrm{~mol} \mathrm{Ag}\left(\frac{6.02 \times 10^{23} \text { atoms }}{1 \mathrm{~mol}}\right)=3.34 \times 10^{24}$ atoms Ag
4. 5.55×10^{33} molecules $\left(\frac{1 \mathrm{~mol}}{6.02 \times 10^{23} \text { molecules }}\right)=9.22 \times 10^{9}$ moles $\mathrm{H}_{2} \mathrm{SO}_{4}$
5. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ adding up the masses of all the atoms $=105.99 \mathrm{~g} / \mathrm{mol}$
6. $\mathrm{Ni}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ is $405.59 \mathrm{~g} / \mathrm{mol}$
7. $88.88 \mathrm{~g} \mathrm{Ca}\left(\frac{1 \mathrm{~mol}}{40.08 \mathrm{~g}}\right)=2.218 \mathrm{~mol} \mathrm{Ca}$
8. $1.25 \mathrm{~mol} \mathrm{KBr}\left(\frac{119.00 \mathrm{~g}}{1 \mathrm{~mol}}\right)=149$ grams
9. $3.50 \mathrm{~g} \mathrm{Au}\left(\frac{1 \mathrm{~mol}}{196.97 \mathrm{~g}}\right)\left(\frac{6.02 \times 10^{23} \mathrm{atoms}}{1 \mathrm{~mol}}\right)=1.07 \times 10^{22}$ atoms Au
10. $0.975 \mathrm{~mol}\left(\frac{22.4 \mathrm{~L}}{1 \mathrm{~mol}}\right)=21.8 \mathrm{~L}$ gas
11. 3.59×10^{19} atoms $\operatorname{Ar}\left(\frac{1 \mathrm{~mol}}{6.02 \times 10^{23} \text { atoms }}\right)\left(\frac{22.4 \mathrm{~L}}{1 \mathrm{~mol}}\right)=0.00134 \mathrm{~L} \mathrm{Ar}$ gas
12. Four oxygens $=64.00$ grams, $\mathrm{H}_{2} \mathrm{SO}_{4}$ total $=98.09$ grams .

So percent oxygen is $\left(\frac{64.00 \mathrm{~g}}{98.09 \mathrm{~g}}\right) \times 100 \%=65.25 \%$
13. Two hydrogens in water $=2.02$ grams, $\mathrm{H}_{2} \mathrm{O}=18.02$ grams

So percent H is $\left(\frac{2.02 g}{18.02 g}\right) \times 100 \%=11.2 \%$

