## **CHM 130 Stoichiometry Worksheet**

The following flow chart may help you work stoichiometry problems. Remember to pay careful attention to what you are given, and what you are trying to find.



1. Fermentation is a complex chemical process of making wine by converting glucose into ethanol and carbon dioxide:

```
C_6H_{12}O_6(s) \rightarrow 2 C_2H_5OH(l) + 2 CO_2(g)
```

- A. Calculate the mass of ethanol produced if 500.0 grams of glucose reacts completely.
- B. Calculate the volume of carbon dioxide gas produced at STP if 100.0 grams of glucose reacts.
- C. If 17.5 moles of ethanol were produced, how many moles of glucose were there in the beginning?

- Consider the reaction of zinc metal with hydrochloric acid, HCl(aq).
  A. Write the equation for this reaction, then balance the equation.
  - B. Calculate the moles of HCl needed to react completely with 8.25 moles of zinc.
  - C. Calculate the grams of zinc chloride produced if 0.238 grams of zinc react completely.
  - D. Calculate the volume of hydrogen gas produced at STP if 25.0 grams of HCl react completely.
- 3. If you dissolve lead(II) nitrate and potassium iodide in water they will react to form lead(II) iodide and potassium nitrate.
  - A. Write the equation for this reaction, then balance the equation.
  - B. Calculate the grams of lead(II) iodide that can be produced from 5.00 moles of potassium iodide.
  - C. Calculate the grams of lead(II) iodide that can be produced from 75.00 grams of potassium iodide.
- 4. Write then balance the combustion reaction for propane gas,  $C_3H_8$ .
  - A. If 5.00 grams of propane burn completely, what volume of carbon dioxide is produced at STP?
  - B. If 75.0 L of steam are produced at STP, what mass of propane must have burned?
  - C. If 34.2 grams of propane are completely combusted, how many moles of steam will that produce?

## **CHM 130 Stoichiometry Worksheet KEY**

1. Fermentation is a complex chemical process of making wine by converting glucose into ethanol and carbon dioxide:

$$C_6H_{12}O_6(s) \rightarrow 2 C_2H_5OH(l) + 2 CO_2(g)$$

A. Calculate the mass of ethanol produced if 500.0 grams of glucose reacts completely.

$$500.0 \text{ g } \text{C}_{6}\text{H}_{12}\text{O}_{6} \left(\frac{1 \text{ mol } \text{C}_{6}\text{H}_{12}\text{O}_{6}}{180.18 \text{ g } \text{C}_{6}\text{H}_{12}\text{O}_{6}}\right) \left(\frac{2 \text{ mol } \text{C}_{2}\text{H}_{5}\text{O}\text{H}}{1 \text{ mol } \text{C}_{6}\text{H}_{12}\text{O}_{6}}\right) \left(\frac{46.08 \text{ g } \text{C}_{2}\text{H}_{5}\text{O}\text{H}}{1 \text{ mol } \text{C}_{2}\text{H}_{5}\text{O}\text{H}}\right) = 255.7 \text{ g } \text{C}_{2}\text{H}_{5}\text{O}\text{H}$$

B. Calculate the volume of carbon dioxide gas produced at STP if 100.0 grams of glucose reacts.

$$100.0 \text{ g } \text{C}_{6}\text{H}_{12}\text{O}_{6} \left(\frac{1 \text{ mol } \text{C}_{6}\text{H}_{12}\text{O}_{6}}{180.18 \text{ g } \text{C}_{6}\text{H}_{12}\text{O}_{6}}\right) \left(\frac{2 \text{ mol } \text{CO}_{2}}{1 \text{ mol } \text{C}_{6}\text{H}_{12}\text{O}_{6}}\right) \left(\frac{22.4 \text{ L } \text{CO}_{2}}{1 \text{ mol } \text{CO}_{2}}\right) = 24.9 \text{ L } \text{CO}_{2}$$

C. If 17.5 moles of ethanol were produced, how many moles of glucose were there in the beginning?

17.5 mol C<sub>2</sub>H<sub>5</sub>OH
$$\left(\frac{1 \operatorname{mol} C_6 H_{12}O_6}{2 \operatorname{mol} C_2 H_5 OH}\right) = 8.75 \operatorname{mol} C_6 H_{12}O_6$$

- 2. Consider the reaction of zinc metal with hydrochloric acid, HCl(aq). A. Write the equation for this reaction, then balance the equation.  $Zn(s) + 2 HCl(aq) \rightarrow H_2(g) + ZnCl_2(aq)$ 
  - B. Calculate the moles of HCl needed to react completely with 8.25 moles of zinc.

8.25 mol Zn 
$$\left(\frac{2 \mod \text{HCl}}{1 \mod \text{Zn}}\right) = 16.5 \mod \text{HCl}$$

C. Calculate the grams of zinc chloride produced if 0.238 grams of zinc react completely.

$$0.238 \text{ g } \text{Zn} \left(\frac{1 \text{ mol } \text{Zn}}{65.39 \text{ g } \text{Zn}}\right) \left(\frac{1 \text{ mol } \text{ZnCl}_2}{1 \text{ mol } \text{Zn}}\right) \left(\frac{136.29 \text{ g } \text{ZnCl}_2}{1 \text{ mol } \text{ZnCl}_2}\right) = 0.496 \text{ g } \text{ZnCl}_2$$

D. Calculate the volume of hydrogen gas produced at STP if 25.0 grams of HCl react completely.

$$25.0 \text{ g HCl} \left(\frac{1 \text{ mol HCl}}{36.46 \text{ g HCl}}\right) \left(\frac{1 \text{ mol H}_2}{2 \text{ mol HCl}}\right) \left(\frac{22.4 \text{ L H}_2}{1 \text{ mol H}_2}\right) = 7.68 \text{ L H}_2 \text{ gas}$$

- 3. If you dissolve lead(II) nitrate and potassium iodide in water they will react to form lead(II) iodide and potassium nitrate.
  - A. Write the equation for this reaction, then balance the equation.

$$Pb(NO_3)_2(aq) + 2 KI(aq) \rightarrow PbI_2(s) + 2 KNO_3(aq)$$

B. Calculate the grams of lead(II) iodide that can be produced from 5.00 moles of potassium iodide.

5.00 mol KI 
$$\left(\frac{1 \operatorname{mol} \operatorname{PbI}_2}{2 \operatorname{mol} \operatorname{KI}}\right) \left(\frac{461.0 \operatorname{g} \operatorname{PbI}_2}{1 \operatorname{mol} \operatorname{PbI}_2}\right) = 1.15 \operatorname{x} 10^3 \operatorname{g} \operatorname{PbI}_2$$

C. Calculate the grams of lead(II) iodide that can be produced from 75.00 grams of potassium iodide.

75.00 g KI 
$$\left(\frac{1 \operatorname{mol} \operatorname{KI}}{166.00 \operatorname{g} \operatorname{KI}}\right) \left(\frac{1 \operatorname{mol} \operatorname{PbI}_2}{2 \operatorname{mol} \operatorname{KI}}\right) \left(\frac{461.0 \operatorname{g} \operatorname{PbI}_2}{1 \operatorname{mol} \operatorname{PbI}_2}\right) = 104.1 \operatorname{g} \operatorname{PbI}_2$$

4. Write then balance the combustion reaction for propane gas,  $C_3H_8$ .

$$C_3H_8(g) + 5 O_2(g) \rightarrow 3 CO_2(g) + 4 H_2O(g)$$

A. If 5.00 grams of propane burn completely, what volume of carbon dioxide is produced at STP?

$$5.00 \text{ g } \text{C}_{3}\text{H}_{8}\left(\frac{1 \text{ mol } \text{C}_{3}\text{H}_{8}}{44.11 \text{ g } \text{C}_{3}\text{H}_{8}}\right) \left(\frac{3 \text{ mol } \text{CO}_{2}}{1 \text{ mol } \text{C}_{3}\text{H}_{8}}\right) \left(\frac{22.4 \text{ L } \text{CO}_{2}}{1 \text{ mol } \text{CO}_{2}}\right) = 7.62 \text{ L } \text{CO}_{2}$$

B. If 75.0 L of steam are produced at STP, what mass of propane must have burned?

75.0 L H<sub>2</sub>O 
$$\left(\frac{1 \mod H_2O}{22.4 L H_2O}\right) \left(\frac{1 \mod C_3H_8}{4 \mod H_2O}\right) \left(\frac{44.11 g C_3H_8}{1 \mod C_3H_8}\right) = 36.9 g C_3H_8$$

C. If 34.2 grams of propane are completely combusted, how many moles of steam will that produce?

$$34.2 \text{ g } \text{C}_{3}\text{H}_{8}\left(\frac{1 \text{ mol } \text{C}_{3}\text{H}_{8}}{44.11 \text{ g } \text{C}_{3}\text{H}_{8}}\right)\left(\frac{4 \text{ mol } \text{H}_{2}\text{O}}{1 \text{ mol } \text{C}_{3}\text{H}_{8}}\right) = 3.10 \text{ mol steam}$$