CHAPTER 23 NUCLEAR CHEMISTRY

23.1 THE NATURE OF NUCLEAR REACTIONS

radioactivity - the spontaneous decay of an unstable nucleus with accompanying emission of radiation.

nuclide - atom with a specific number of protons and neutrons in its nucleus.

 \Rightarrow There are 271 stable nuclides in nature, others are radioactive

radionuclide - unstable isotope that undergoes nuclear decay

⇒ All isotopes of elements with ≥ 84 protons are radioactive; specific isotopes of lighter elements are also radioactive. (E.g. ${}^{3}_{1}$ H)

nucleons = # protons + # neutrons

Nuclear reactions differ from ordinary chemical reactions

- Atomic numbers of nuclei may change (elements are converted to other elements or an element can be converted to an isotope of that element).
- Protons, neutrons, electrons and other elementary particles may be involved in a nuclear reaction.
- Reactions occur between particles in the nucleus.
- Matter is converted to energy & huge amounts of energy are released.
- Nuclear reactions involve a specific isotope of an element; different isotopes of an element may undergo different nuclear reactions.

Types of Radioactive Decay:

1) alpha, α , emission

 α particles - high energy and low speed + charged particles; $\frac{4}{2}$ He (helium-4)

E.g. emission of an α particle: $^{238}_{92}$ U $\rightarrow ~^{234}_{90}$ Th + $^{4}_{2}$ He

2) beta, β , emission

 β particles – high energy and high speed – charged electrons: ${}^{0}_{-1}e$

E.g. emission of a β particle: $234 \atop 90$ Th $\rightarrow 234 \atop 91$ Pa + $0 \atop -1$ e

- During β decay, a neutron is converted into a proton: ${}^{1}_{0}n \rightarrow {}^{1}_{1}p + {}^{0}_{-1}e$
- 3) gamma, γ , emission; gamma emission accompanies other types of decay

 γ particles - high energy photons, very penetrating: ${}^0_0 \gamma$

4) positron, ${}^{0}_{1}e$, emission - same mass, but opposite charge of electron

 $^{22}_{11}$ Na \rightarrow $^{22}_{10}$ Ne + $^{0}_{1}$ e

5) Electron capture - β particle is captured instead of emitted

 $^{82}_{37}$ Rb + $^{0}_{-1}$ e \rightarrow $^{82}_{36}$ Kr

23.2 NUCLEAR STABILITY

Nuclear Stability

- Nuclei containing 2, 8, 20, 50, 82, or 126 protons or neutrons are generally more stable than nuclei that do not possess these "magic" numbers.
- As the atomic number increases, more neutrons are needed to help bind the nucleus together, so there is a high neutron:proton ratio.
- Nuclei of elements with > 83 protons are unstable due to the large # of nucleons present in the tiny nucleus; by undergoing radioactive decay unstable nuclei can form more stable nuclei.
- Nuclei with both even numbers of both protons & neutrons are generally more stable than those with odd numbers:

# protons	# neutrons	# stable nuclei
even	even	164
even	odd	53
odd	even	50
odd	odd	4

23.3 NATURAL RADIOACTIVITY

Radioactive Decay Series

Many heavy elements undergo several sequential emissions before forming a more stable nuclei:

 ${}^{238}_{92}\mathsf{U} \rightarrow {}^{234}_{90}\mathsf{Th} + {}^{4}_{2}\mathsf{He} \rightarrow {}^{234}_{91}\mathsf{Pa} + {}^{0}_{-1}\mathsf{e} \rightarrow {}^{234}_{92}\mathsf{U} + {}^{0}_{-1}\mathsf{e} \rightarrow \rightarrow \rightarrow {}^{206}_{82}\mathsf{Pb} + {}^{4}_{2}\mathsf{He}$

Kinetics of Radioactive Decay

- Different isotopes decay at different rates; rates vary from ms to days to years.
- Radioactive decay is a first order rate process; all radioactive substances have a characteristic half-life:

 $kt_{1/2} = 0.693$ $t_{1/2} = half-life; k = rate constant$

In $\frac{A_t}{A_0}$ = - kt A₀ = initial activity or amount; A_t = activity after a certain time

 $\frac{A_t}{A_0}$ = fraction of material remaining after time t

23.4 NUCLEAR TRANSMUTATION

Transmutation - Change of one element to another as a result of bombardment by highenergy particles (e.g. neutrons, electrons, and other nuclei).

- Rutherford prepared 1st synthetic nuclide, ¹⁷O, in 1919; Irene Curie prepared 1st radioactive nuclide, ³⁰P, in 1934.
- All trans-Uranium elements (Z > 92) are both synthetic (man-made) and radioactive.

Nuclear transmutations can show α -, β -, and γ -emissions as well as production of protons, neutrons, and other isotopes:

E.g. ${}^{27}_{13}\text{Al} + {}^{4}_{2}\text{He} \rightarrow {}^{30}_{15}\text{P} + {}^{1}_{0}\text{n}$

23.5 NUCLEAR FISSION

Fission - A nuclear reaction that releases energy as a result of splitting of large nuclei into smaller ones.

Nuclear Power plants use fission to split U-235 to produce energy:

- 1. U-235 is bombarded with slow neutrons this produces smaller nuclei as well as more neutrons and energy.
- 2. A chain reaction results because each neutron produced can cause fission of another U-235 nucleus.

E.g.
$${}^{235}_{92}$$
U + ${}^{1}_{0}$ n \rightarrow ${}^{142}_{56}$ Ba + ${}^{91}_{36}$ Kr + $3{}^{1}_{0}$ n

Critical mass - minimum mass required to sustain a chain reaction.

Control rods are made of B or Cd; these rods absorb neutrons so the process doesn't accelerate too rapidly. Rods are raised/lowered to control the speed of the process.

Fuel rods are made of U-235. ²³⁸U is the most abundant U isotope but is not fissionable so uranium must be enriched to increase the amount of ²³⁵U.

Moderator - slows down the neutrons. Water or other liquid coolant surround rods. The water serves to 1) slow down neutrons so they can collide with U-235; 2) transfer heat to steam generator.

Primary problems with nuclear power plants:

- 1) safety (Chernobyl and Three Mile Island had cooling system failures that led to reactor meltdowns. Chernobyl also did not have containment building around reactor.)
- 2) nuclear waste some products will remain radioactive for thousands of years.

23.6 NUCLEAR FUSION

Fusion - A nuclear reaction that releases energy as a result of the union of smaller nuclei to form larger ones.

e.g.
$${}^{2}_{1}H + {}^{3}_{1}H \rightarrow {}^{4}_{2}He + {}^{1}_{0}n$$

- Fusion generates even more energy than fission and creates little radioactive waste, so it would provide a wonderful source of energy.
- ...but, fusion requires very high temps (tens of millions of degrees Celsius) in order for nuclei to overcome strong repulsive forces – magnetic fusion reactors are being designed and tested.

23.7 APPLICATIONS OF RADIOACTIVE ISOTOPES

- Nuclear power plants
- Medical diagnosis and treatment e.g. PET scan monitors glucose metabolism in brain using C-11 isotope; I-131 measures activity of thyroid
- Carbon dating (measure amount of C-14 remaining in a sample)
- Synthesis of new elements
- Irradiation of food preserves food & destroys parasites
- Nuclear Weapons (Atomic bombs and H bombs)