1. Given reaction rate data for: $\mathrm{H}_{2} \mathrm{O}_{2}+3 \mathrm{I}^{-}+2 \mathrm{H}^{+} \rightarrow \mathrm{I}_{3}+2 \mathrm{H}_{2} \mathrm{O}$

Trial	$\left[\mathrm{H}_{2} \mathrm{O}_{2}\right] \mathrm{M}$	$[\mathrm{l}] \mathrm{M}$	$\left[\mathrm{H}^{+}\right] \mathrm{M}$	Rate $(\mathrm{M} / \mathrm{s})$
1	0.010	0.010	0.00050	1.15×10^{-6}
2	0.020	0.010	0.00050	2.30×10^{-6}
3	0.010	0.020	0.00050	2.30×10^{-6}
4	0.010	0.010	0.00100	1.15×10^{-6}

A. Determine the order of each reactant and the overall reaction order.

From $1 \rightarrow 2\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$ doubles and Rate doubles so order $=\mathbf{1}$ for $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$
From $1 \rightarrow 3[\mathrm{I}]$ doubles and Rate doubles so order = 1 for [I]
From $1 \rightarrow 4\left[\mathrm{H}^{+}\right]$doubles and Rate does not change so order $=\mathbf{0}$ for $\left[\mathrm{H}^{+}\right]$

Overall Reaction Order: 2

B. Write the rate law for the reaction.

$$
\text { Rate }=\mathrm{k}\left[\mathrm{H}_{2} \mathrm{O}_{2}\right][\mathrm{I}]
$$

C. Calculate the rate constant, k .

$$
\mathrm{k}=\frac{\text { Rate }}{\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]\left[\mathrm{l}^{-}\right]}=\frac{1.15 \times 10^{-6} \mathrm{M} / \mathrm{s}}{(0.010 \mathrm{M})(0.010 \mathrm{M})}=\mathbf{1 . 2} \mathbf{\times 1 0 ^ { - 2 }} \mathbf{M}^{-1} \mathbf{s}^{-1}
$$

2. Given the rate data for: $\quad 2 \mathrm{NO}+2 \mathrm{H}_{2} \rightarrow \mathrm{~N}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

$[\mathrm{NO}]\left(\frac{\mathrm{mol}}{\mathrm{L}}\right)$	$\left[\mathrm{H}_{2}\right]\left(\frac{\mathrm{mol}}{\mathrm{L}}\right)$	Rate $\left(\frac{\mathrm{mol}}{\mathrm{Ls}}\right)$
0.420	0.122	0.136
0.210	0.122	0.0339
0.210	0.244	0.0678
0.105	0.488	0.0339

A. What is the rate law for the reaction?
NO: order = 2
H_{2} : order $=1$

Rate $=\mathbf{k}\left[\mathrm{NO}^{2}{ }^{2} \mathrm{H}_{2}\right]$
B. Calculate the rate constant, k.

$$
\mathrm{k}=\frac{\text { Rate }}{\left[\mathrm{NO}^{2}\left[\mathrm{H}_{2}\right]\right.}=\frac{0.136 \frac{\mathrm{~mol}}{\mathrm{~L} \cdot \mathrm{~s}}}{\left(0.420 \frac{\mathrm{~mol}}{\mathrm{~L}}\right)^{2}\left(0.122 \frac{\mathrm{~mol}}{\mathrm{~L}}\right)}=6.32 \frac{\mathrm{~L}^{2}}{\mathrm{~mol}^{2} \mathrm{~s}}=6.32 \mathrm{M}^{-2} \mathrm{~s}^{-1}
$$

C. What is the rate of reaction when $[\mathrm{NO}]=0.550 \mathrm{M}$ and $\left[\mathrm{H}_{2}\right]=0.199 \mathrm{M}$?

$$
\text { Rate }=k[N O]^{2}\left[\mathrm{H}_{2}\right]=6.32 \mathrm{M}^{-2} \mathrm{~s}^{-1}(0.550 \mathrm{M})^{2}(0.199 \mathrm{M})=\mathbf{0 . 3 8 0} \mathbf{M s}^{-1}
$$

FIRST-ORDER KINETICS PROBLEMS KEY

1. The rate law for the decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ is Rate $=\mathrm{k}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$, where $\mathrm{k}=5.0 \times 10^{-4} \mathrm{~s}^{-1}$. What is the concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ after 1900 s , if the initial concentration is 0.56 M ?

$$
\begin{aligned}
& \ln \frac{[\mathbf{A}]_{\mathrm{t}}}{[\mathbf{A}]_{0}}=-\mathrm{kt} \quad\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]_{0}=0.56 \mathrm{M} ; \mathrm{k}=5.0 \times 10^{-4} \mathrm{~s}^{-1} ; \mathrm{t}=1900 \mathrm{~s} \\
& \ln \frac{\left[N_{2} O_{5}\right]_{\mathrm{t}}}{(0.56 \mathrm{M})}=-\left(5.0 \times 10^{-4} \mathrm{~s}^{-1}\right)(1900 \mathrm{~s})=-0.95
\end{aligned}
$$

Take anti In both sides: $\frac{\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]_{\mathrm{t}}}{(0.56 \mathrm{M})}=\mathrm{e}^{-0.95}=0.387$

$$
\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]_{\mathbf{t}}=0.56 \times 0.387=\mathbf{0 . 2 2} \mathbf{~ M}
$$

2. The first order reaction, $\mathrm{SO}_{2} \mathrm{Cl}_{2} \rightarrow \mathrm{SO}_{2}+\mathrm{Cl}_{2}$, has a rate constant of $0.17 \mathrm{~h}^{-1}$.

If the initial concentration of $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ is $1.25 \times 10^{-3} \mathrm{M}$, how many seconds does it take for the concentration to drop to $0.31 \times 10^{-3} \mathrm{M}$?
$\mathrm{k}=0.17 \mathrm{~h}^{-1} \quad\left[\mathrm{SO}_{2} \mathrm{Cl}_{2}\right]_{\mathrm{t}}=0.31 \times 10^{-3} \mathrm{M} \quad\left[\mathrm{SO}_{2} \mathrm{Cl}_{2}\right]_{0}=1.25 \times 10^{-3} \mathrm{M}$
$\begin{aligned} \ln \frac{[\mathbf{A}]_{\mathrm{t}}}{[\mathbf{A}]_{0}}=-k t \Rightarrow \quad t & =\frac{-\ln \left(\frac{0.31 \times 10^{-3} \mathrm{M}}{1.25 \times 10^{-3} \mathrm{M}}\right)}{0.17 h^{-1}}=-\left(\frac{-1.39}{0.17 h^{-1}}\right)=\mathbf{8 . 1 8 ~ h} \\ \mathrm{t} & =8.18 \mathrm{~h}\left(\frac{3600 \mathrm{~s}}{1 \mathrm{hr}}\right)=\mathbf{2 . 9 \times 1 0 ^ { 4 }} \mathbf{s}\end{aligned}$
3. Cobalt- 60 is a radioisotope that decays by first-order kinetics and has a half-life of 5.26 years. The Cobalt-60 in a radiotherapy unit must be replaced when the concentration of Co decreases to 75.0% of its initial value. When does this occur?

$$
\begin{array}{lll}
\mathrm{t}_{1 / 2}=5.26 \mathrm{yr} & \mathrm{kt}_{1 / 2}=0.693 & \mathrm{k}=\frac{0.693}{5.26 \mathrm{yr}}=0.132 \mathrm{yr}^{-1} \\
\ln \frac{[\mathbf{A}]_{\mathrm{t}}}{[\mathbf{A}]_{0}}=-\mathrm{kt} & {[\mathrm{Co}]_{\mathrm{t}}=0.75[\mathrm{Co}]_{0}} & \ln \frac{0.750\left[\mathrm{Co]}_{0}\right.}{[\mathrm{Co}]_{0}}=-\left(0.132 \mathrm{yr}^{-1}\right) \mathrm{t} \\
\ln 0.750=-\left(0.132 \mathrm{yr}^{-1}\right) \mathrm{t} & \Rightarrow \quad-0.288=-\left(0.132 \mathrm{yr}^{-1}\right) \mathrm{t} \quad \Rightarrow \quad \mathbf{t}=\mathbf{2 . 1 8 ~ \mathbf { ~ y r }}
\end{array}
$$

4. The first order reaction, $\mathrm{CH}_{3} \mathrm{NC} \rightarrow \mathrm{CH}_{3} \mathrm{CN}$, has a rate constant of $6.3 \times 10^{-4} \mathrm{~s}^{-1}$ at $230^{\circ} \mathrm{C}$.
A. What is the half-life of the reaction?

$$
\mathrm{t}_{1 / 2}=\frac{0.693}{k}=\frac{0.693}{6.3 \times 10^{-4} s^{-1}}=\mathbf{1 . 1} \times 10^{3} \mathrm{~s}
$$

B. How much of a 10.0 g sample of $\mathrm{CH}_{3} \mathrm{NC}$ will remain after 5 half-lives?

$$
10.0 \mathrm{~g}\left(\frac{1}{2}\right)^{5}=\mathbf{0 . 3 1 3} \mathrm{g}
$$

C. How many seconds would be required for 75% of a $\mathrm{CH}_{3} \mathrm{NC}$ sample to decompose?
75% decomposed; 25% remains, so 2 half lives have passed.
$2 \times 1.1 \times 10^{3} \mathrm{~s}=2.2 \times 10^{3} \mathrm{~s}$

ACTIVATION ENERGY AND REACTION MECHANISMS KEY

1. Draw the potential energy profile for a reaction with $\Delta H=-150 \mathrm{~kJ}$ and $E_{a}=100 \mathrm{~kJ}$.

2. A certain first order reaction has a rate constant of $1.75 \times 10^{-1} \mathrm{~s}^{-1}$ at $20.0^{\circ} \mathrm{C}$. What is the value of k at $60.0^{\circ} \mathrm{C}$ if $\mathrm{E}_{\mathrm{a}}=55.5 \mathrm{~kJ} / \mathrm{mol}$?
$\mathrm{k}_{1}=1.75 \times 10^{-1} \mathrm{~s}^{-1} \quad \mathrm{~T}_{1}=293 \mathrm{~K} \quad \mathrm{E}_{\mathrm{a}}=55.5 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{k}_{2}=? \quad \mathrm{~T}_{2}=333 \mathrm{~K} \quad \mathrm{R}=8.314 \frac{\mathrm{~J}}{\mathrm{Kmol}}\left(\frac{1 \mathrm{~kJ}}{1000 \mathrm{~J}}\right)=8.314 \times 10^{-3} \mathrm{~kJ} /(\mathrm{K} \times \mathrm{mol})$

$$
\begin{aligned}
& \ln \left(\frac{k_{1}}{k_{2}}\right)=\frac{E_{a}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right) \quad \ln \left(\frac{1.75 \times 10^{-1} s^{-1}}{k_{2}}\right)=\frac{55.5 \frac{\mathrm{~kJ}}{\mathrm{~mol}}}{8.314 \times 10^{-3} \frac{\mathrm{~kJ}}{\mathrm{Kmol}}}\left(\frac{1}{333 \mathrm{~K}}-\frac{1}{293 \mathrm{~K}}\right) \\
& \ln \left(\frac{1.75 \times 10^{-1} s^{-1}}{k_{2}}\right)=6.68 \times 10^{3} \mathrm{~K}\left(-0.000410 \mathrm{~K}^{-1}\right)=-2.74 \\
& \frac{1.75 \times 10^{-1} s^{-1}}{k_{2}}=\mathrm{e}^{-2.74}=0.0646 \quad \Rightarrow \mathrm{k}_{2}=\frac{1.75 \times 10^{-1} \mathrm{~s}^{-1}}{0.0646}=2.71 \mathrm{~s}^{-1}
\end{aligned}
$$

3. The mechanism for the decomposition of ozone is:

Step 1: $\quad \mathrm{O}_{3} \leftrightarrows \mathrm{O}_{2}+\mathrm{O}$ fast
Step 2: $\quad \mathrm{O}_{3}+\mathrm{O} \rightarrow 2 \mathrm{O}_{2}$ slow
yielding the following overall reaction: $\quad 2 \mathrm{O}_{3} \rightarrow 3 \mathrm{O}_{2}$
A. Which is the rate determining step? step 2
B. What is the molecularity of the rate determining step? bimolecular
C. Is O an intermediate or a catalyst? intermediate
D. Write the rate law predicted by this mechanism. Rate $=\mathrm{k}_{2}\left[\mathrm{O}_{3}\right][\mathrm{O}]$

$$
\mathrm{k}_{1}\left[\mathrm{O}_{3}\right]=\mathrm{k}_{-1}\left[\mathrm{O}_{2}\right][\mathrm{O}] \Rightarrow[\mathrm{O}]=\frac{k_{1}}{k_{-1}} \frac{\left[O_{3}\right]}{\left[O_{2}\right]} \quad \text { Rate }=\frac{k_{2} k_{1}}{k_{-1}}\left[\mathrm{O}_{3}\right] \frac{\left[O_{3}\right]}{\left[O_{2}\right]} \text { or Rate }=\frac{k_{2} k_{1}}{k_{-1}} \frac{\left[O_{3}\right]^{2}}{\left[O_{2}\right]}
$$

4. The catalyzed reaction: $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3}$
is thought to occur by the following mechanism:
Step 1: $\quad 2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$ slow
Step 2: $\quad 2 \mathrm{NO}_{2}+2 \mathrm{SO}_{2} \rightarrow 2 \mathrm{NO}+2 \mathrm{SO}_{3} \quad$ fast
A. Identify the catalyst. NO
B. Identify the intermediate. $\mathbf{N O}_{2}$
C. Write the rate law for the reaction. Rate $=\mathbf{k}[\mathbf{N O}]^{2}\left[\mathrm{O}_{2}\right]$
