1) What is the pH of a solution containing $0.30 \mathrm{M} \mathrm{NH}_{3}$ and $0.15 \mathrm{M} \mathrm{NH}_{4} \mathrm{NO}_{3}$?
K_{b} for $\mathrm{NH}_{3}=1.8 \times 10^{-5}$
NH_{3} is a weak base: $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$
$\mathrm{NH}_{4} \mathrm{NO}_{3}$ is a salt: $\mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{NO}_{3}^{-}$; thus NH_{4}^{+}is a "common ion"
$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$

	$\left[\mathrm{NH}_{3}\right] \mathrm{M}$	$\left[\mathrm{H}_{2} \mathrm{O}\right]$	$\left[\mathrm{NH}_{4}^{+}\right] \mathrm{M}$	$\left[\mathrm{OH}^{-}\right] \mathrm{M}$
I	0.30		0.15	0
C	-x		+x	+x
E	$0.30-\mathrm{x}$		$0.15+\mathrm{x}$	x

$$
\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}
$$

Approximation: ignore $-x,+x$ terms: $1.8 \times 10^{-5}=\frac{(0.15) x}{(0.30)}$
$x=\left[\mathrm{OH}^{-}\right]=3.6 \times 10^{-5} \mathrm{M}$
$\mathrm{pOH}=-\log 3.6 \times 10^{-5}=4.44$
$\mathrm{pH}=14-4.44=9.56 \quad p \mathcal{H}=9.56$
(This problem can also be solved using the $\mathrm{K}_{\mathrm{a}} \mathrm{rxn}: \mathrm{NH}_{4}^{+} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}^{+}$; if you use this reaction, you must convert K_{b} to its corresponding K_{a} value.)
2) A buffer solution contains $0.20 \mathrm{M} \mathrm{HCHO}_{2}$ and $0.30 \mathrm{M} \mathrm{NaCHO}_{2}$. The volume of the solution is 125 mL . K_{a} for $\mathrm{HCHO}_{2}=1.8 \times 10^{-4}$
a) What is the pH of this buffer solution?

Salt: $\mathrm{NaCHO}_{2} \rightarrow \mathrm{Na}^{+}+\mathrm{CHO}_{2}{ }^{-}$
Acid ionization rxn: $\mathrm{HCHO}_{2} \rightleftharpoons \mathrm{H}^{+}+\mathrm{CHO}_{2}{ }^{-}$

I	0.20	0	0.30
C	-x	+x	+x
E	$0.20-\mathrm{x}$	+x	$0.30+\mathrm{x}$

Approximation: ignore $-x,+x$ terms

$$
\begin{array}{ll}
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CHO}_{2}^{-}\right]}{\left[\mathrm{HCHO}_{2}\right]} \Rightarrow \quad 1.8 \times 10^{-4}=\frac{x(0.30)}{(0.20)} & \Rightarrow \mathrm{x}=\left[\mathrm{H}^{+}\right]=1.2 \times 10^{-4} \\
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log 1.2 \times 10^{-4}=3.92 & \mathrm{pH}=3.92
\end{array}
$$

b) If 50.0 mL of 0.10 M NaOH is added to the buffer solution, what is the pH ?

Strong base: $\mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-}$
diluted so recalculate M : $\mathrm{M} \mathrm{HCHO}_{2}=\frac{(0.20 \mathrm{M})(125 \mathrm{ml})}{(175 \mathrm{ml})}=0.14 \mathrm{M}$
$\mathrm{M} \mathrm{CHO}_{2}^{-}=\frac{(0.30 \mathrm{M})(125 \mathrm{ml})}{(175 \mathrm{ml})}=0.21 \mathrm{M} ; \mathrm{M} \mathrm{OH}^{-}=\frac{(0.10 \mathrm{M})(50.0 \mathrm{ml})}{(175 \mathrm{ml})}=0.029 \mathrm{M}$
neutralization reaction: $\mathrm{OH}^{-}+\mathrm{HCHO}_{2} \rightarrow \mathrm{CHO}_{2}^{-}+\mathrm{H}_{2} \mathrm{O}$

Initial	0.029	0.14	0.21
Change	-0.029	-0.029	+0.029
Final	0	0.11	0.24

Acid ionization rxn: $\mathrm{HCHO}_{2} \rightleftharpoons \mathrm{H}^{+}+\mathrm{CHO}_{2}$

I	0.11	0	0.24
C	-x	+x	+x
E	$0.11-\mathrm{x}$	+x	$0.24+\mathrm{x}$

$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CHO}_{2}^{-}\right]}{\left[\mathrm{HCHO}_{2}\right]} \Rightarrow \quad 1.8 \times 10^{-4}=\frac{x(0.24)}{(0.11)} \Rightarrow \mathrm{x}=\left[\mathrm{H}^{+}\right]=8.25 \times 10^{-5}$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log 8.25 \times 10^{-4}=4.08 \quad p \mathcal{H}=4.08$
*For a buffer solution, pH only rises a little if a small amount of strong base is added.
c) If 50.0 mL of 0.10 M HCl is added to the buffer solution, what is the pH ?

Strong acid: $\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$
diluted so recalculate M : $\mathrm{M} \mathrm{HCHO}_{2}=\frac{(0.20 \mathrm{M})(125 \mathrm{ml})}{(175 \mathrm{ml})}=0.14 \mathrm{M}$
$\mathrm{M} \mathrm{CHO}_{2}^{-}=\frac{(0.30 \mathrm{M})(125 \mathrm{ml})}{(175 \mathrm{ml})}=0.21 \mathrm{M} ; \quad \mathrm{M} \mathrm{H}^{+}=\frac{(0.10 \mathrm{M})(50.0 \mathrm{ml})}{(175 \mathrm{ml})}=0.029 \mathrm{M}$
neutralization reaction: $\quad \mathrm{H}^{+}+\mathrm{CHO}_{2}^{-} \rightarrow \mathrm{HCHO}_{2}$

Initial	0.029	0.21	0.14
Change	-0.029	-0.029	+0.029
Final	0	0.18	0.17

Acid ionization rxn: $\mathrm{HCHO}_{2} \rightleftharpoons \mathrm{H}^{+}+\mathrm{CHO}_{2}{ }^{-}$

I	0.17	0	0.18
C	-x	+x	+x
E	$0.17-\mathrm{x}$	+x	$0.18+\mathrm{x}$

$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CHO}_{2}^{-}\right]}{\left[\mathrm{HCHO}_{2}\right]} \Rightarrow \quad 1.8 \times 10^{-4}=\frac{x(0.18)}{(0.17)} \Rightarrow \mathrm{x}=\left[\mathrm{H}^{+}\right]=1.7 \times 10^{-4}$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log 1.7 \times 10^{-4}=3.77$

$$
p \mathcal{H}=3.77
$$

* For a buffer, pH only drops a little when a small amount of strong acid is added.

1. A 20.00 ml sample of 0.150 M HCl is titrated with 0.200 M NaOH . Calculate the pH of the solution after the following volumes of NaOH have been added: a) 0 mL ; b) 10.00 mL ; 15.0 mL ; d) 20.00 mL .
a) 0 ml of NaOH added - only SA is present initially:

For strong acid: $\left[\mathrm{H}^{+}\right]=[\mathrm{HCl}]=0.150 \mathrm{M} \mathrm{HCl}$

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log (0.150)=0.824
$$

b) 10.00 ml of NaOH
neutralization reaction: $\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$

$$
\text { SA } \quad \text { SB }
$$

moles $\mathrm{HCl}=20.00 \mathrm{ml}\left(\frac{1 L}{1000 m L}\right)\left(\frac{0.150 \text { moles } \mathrm{HCl}}{L}\right)=3.00 \times 10^{-3}$ moles HCl
moles $\mathrm{NaOH}=10.00 \mathrm{ml}\left(\frac{1 L}{1000 m L}\right)\left(\frac{0.200 \text { moles } \mathrm{NaOH}}{L}\right)=2.00 \times 10^{-3}$ moles NaOH
After neutralization:
moles excess acid $=3.00 \times 10^{-3}$ moles -2.00×10^{-3} moles $=1.00 \times 10^{-3}$ moles HCl

$$
\begin{aligned}
& \mathrm{M} \mathrm{H}^{+}=\mathrm{M} \mathrm{HCl}=\frac{1.00 \times 10^{-3} \text { moles }}{0.03000 L}=0.0333 \mathrm{M} \\
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log 0.0333=1.478
\end{aligned}
$$

c) 15.0 mL of NaOH

From part b, moles $\mathrm{HCl}=3.00 \times 10^{-3}$ moles HCl
moles $\mathrm{NaOH}=15.00 \mathrm{ml}\left(\frac{1 L}{1000 \mathrm{~mL}}\right)\left(\frac{0.200 \text { moles } \mathrm{NaOH}}{L}\right)=3.00 \times 10^{-3}$ moles NaOH
moles $\mathrm{HCl}=$ moles NaOH
at equivalence pt: $p \mathcal{H}=7.000$ (for SA/SB titration)
d) 20.00 mL
from part b, moles $\mathrm{HCl}=3.00 \times 10^{-3}$ moles HCl

$$
\text { moles } \mathrm{NaOH}=20.00 m l\left(\frac{1 L}{1000 m L}\right)\left(\frac{0.200 \text { moles } \mathrm{NaOH}}{L}\right)=4.00 \times 10^{-3} \text { moles } \mathrm{NaOH}
$$

After neutralization:
moles excess base $=4.00 \times 10^{-3}$ moles $-3.00 \times 10^{-3} \mathrm{moles}=1.00 \times 10^{-3}$ moles NaOH

$$
\begin{aligned}
& \mathrm{M} \mathrm{OH}^{-}=\mathrm{M} \mathrm{NaOH}=\frac{1.00 \times 10^{-3} \text { moles }}{0.040 L}=0.0250 \mathrm{M} \mathrm{OH}^{-} \\
& \mathrm{pOH}=-\log 0.0250=1.602 \quad \mathrm{pH}=14-1.602=12.398
\end{aligned}
$$

2. A 50.0 mL sample of $0.50 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ acid is titrated with $0.150 \mathrm{M} \mathrm{NaOH} . \mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}$ for $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$. Calculate the pH of the solution after the following volumes of NaOH have been added: a) 0 mL ; b) 166.7 mL ; c) 180.0 mL .
a) 0 ml of base; only a weak acid is initially present so $\left[\mathrm{H}^{+}\right] \neq[\mathrm{HA}]$

$$
\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightleftharpoons \mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}
$$

I	0.50	0	0
C	-x	x	x
E	$0.50-\mathrm{x}$	x	x

$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]} \quad 1.8 \times 10^{-5}=\frac{x^{2}}{0.50}$
$\left[\mathrm{H}^{+}\right]=\mathrm{x}=\sqrt{0.50\left(1.8 \times 10^{-5}\right)}=3.0 \times 10^{-3}$
$\mathrm{pH}=-\log 3.0 \times 10^{-3}=2.52$
b) 166.7 ml of NaOH are added
from part b, moles $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}=2.5 \times 10^{-2}$ moles $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
moles $\mathrm{NaOH}=166.7 \mathrm{ml}\left(\frac{1 L}{1000 m L}\right)\left(\frac{0.150 \text { moles } \mathrm{NaOH}}{L}\right)=2.50 \times 10^{-2}$ moles NaOH
neutralization: $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{OH}^{-} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}+\mathrm{H}_{2} \mathrm{O}$

l	0.025	0.0250	0	
C	-0.025	-0.025	+0.025	
Final	0	0	0.025	

only acetate remains - a weak base:
$\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]=\frac{2.5 \times 10^{-2} \text { moles }}{0.2167 \mathrm{~L}}=0.115 \mathrm{M}$
base hydrolysis: $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{OH}^{-}$

I	0.115		0	0
C	-x		x	x
E	$0.115-\mathrm{x}$		x	x

K_{b} for $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2^{-}}=\frac{1 \times 10^{-14}}{1.8 \times 10^{-5}}=5.6 \times 10^{-10}$
$\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}$
$5.6 \times 10^{-10}=\frac{x^{2}}{0.115}$
$x=\left[\mathrm{OH}^{-}\right]=\sqrt{0.115\left(5.6 \times 10^{-10}\right)}=8.0 \times 10^{-6}$
$\mathrm{pOH}=-\log 8.0 \times 10^{-6}=5.10 \quad \mathrm{pH}=14-5.10=8.90$
\Rightarrow At the equivalence point for a WA/SB titration, the $\mathrm{pH}>7$ due to the OH^{-}produced by the conjugate base hydrolysis reaction.
c) 180.0 mL of NaOH are added
from part b, moles $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}=2.5 \times 10^{-2}$ moles $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
moles $\mathrm{NaOH}=180.00 \mathrm{ml}\left(\frac{1 L}{1000 m L}\right)\left(\frac{0.150 \text { moles } \mathrm{NaOH}}{L}\right)=2.7 \times 10^{-2}$ moles NaOH moles excess base $=2.7 \times 10^{-2}$ moles -2.5×10^{-2} moles $=2.0 \times 10^{-3}$ moles NaOH $\mathrm{M} \mathrm{OH}^{-}=\mathrm{M} \mathrm{NaOH}=\frac{2.0 \times 10^{-3} \text { moles }}{0.23 \mathrm{~L}}=8.7 \times 10^{-3} \mathrm{M} \mathrm{OH}^{-}$
$\mathrm{pOH}=-\log 8.7 \times 10^{-3}=2.06 \quad \mathrm{pH}=14-2.06=11.94$
${ }^{*}$ Excess $\mathfrak{N a O} \mathcal{H}$ remains - this is the primary source of $O \mathcal{H}$. We can neglect the fydrolysis of the conjugate base because this would contribute a relatively small amount of $O \mathcal{H}$ compared to the amount that comes directly from the excess $\mathfrak{N a O H}$.

1. At $25^{\circ} \mathrm{C}, 0.0349 \mathrm{~g}$ of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ dissolves in 1.0 L of solution. Calculate $\mathrm{K}_{\text {sp }}$ for this salt. solubility $=\frac{0.0349 \mathrm{~g} \mathrm{Ag}_{2} \mathrm{CO}_{3}}{1.0 \mathrm{~L}} \times \frac{1 \mathrm{~mol} \mathrm{Ag}_{2} \mathrm{CO}_{3}}{275.8 \mathrm{~g} \mathrm{Ag}_{2} \mathrm{CO}_{3}}=1.3 \times 10^{-4} \mathrm{M} \mathrm{Ag}_{2} \mathrm{CO}_{3}$
$\mathrm{Ag}_{2} \mathrm{CO}_{3}(s) \rightleftharpoons 2 \mathrm{Ag}^{+}(a q)+\mathrm{CO}_{3}^{2-}(a q)$

$$
\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CO}_{3}^{2-}\right]
$$

I		0
C	2 x	x
E	2 x	x

$x=$ molar solubility of $\mathrm{Ag}_{2} \mathrm{CO}_{3}=1.3 \times 10^{-4} \mathrm{M}$
$\left[\mathrm{CO}_{3}^{2-}\right]=x=1.3 \times 10^{-4} \mathrm{M}$
$\left[\mathrm{Ag}^{+}\right]=2 \mathrm{x}=2\left(1.3 \times 10^{-4} \mathrm{M}\right)=2.6 \times 10^{-4} \mathrm{M}$
$\mathrm{K}_{\mathrm{sp}}=\left[2.6 \times 10^{-4}\right]^{2}\left[1.3 \times 10^{-4}\right]=8.8 \times 10^{-12}$
2. Silver phosphate, $\mathrm{Ag}_{3} \mathrm{PO}_{4}$, is an insoluble salt that has a $\mathrm{K}_{\text {sp }}=1.3 \times 10^{-20}$.
a) Calculate the molar solubility of $\mathrm{Ag}_{3} \mathrm{PO}_{4}$ in pure water.

$$
\mathrm{Ag}_{3} \mathrm{PO}_{4}(s) \rightleftharpoons 3 \mathrm{Ag}^{+}(a q)+\mathrm{PO}_{4}{ }^{3-}(a q) \quad \mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ag}^{+}\right]^{3}\left[\mathrm{PO}_{4}{ }^{3-}\right]
$$

I		0	0
C		3 x	x
E		3 x	x

$K_{\text {sp }}=(3 x)^{3} x$
$1.3 \times 10^{-20}=27 x^{4}$
$x^{4}=4.8 \times 10^{-22}$
$\mathbf{X}=4.7 \times 10^{-6} \mathcal{M}=$ molar solubility of $\mathcal{A g}_{3} \mathcal{P O}_{4}$ in pure water
b) Calculate the molar solubility of $\mathrm{Ag}_{3} \mathrm{PO}_{4}$ in a solution containing $0.020 \mathrm{M} \mathrm{Na}_{3} \mathrm{PO}_{4}$ (a soluble salt).
soluble salt: $\mathrm{Na}_{3} \mathrm{PO}_{4} \rightarrow 3 \mathrm{Na}^{+}+\mathrm{PO}_{4}{ }^{3-}$
Phosphate is the common ion:
$\left[\mathrm{PO}_{4}{ }^{3-}\right]=\left[\mathrm{Na}_{3} \mathrm{PO}_{4}\right]=0.020 \mathrm{M}$ (since $1 \mathrm{~mol} \mathrm{Na}_{3} \mathrm{PO}_{4}$ forms $1 \mathrm{~mol} \mathrm{PO}{ }_{4}{ }^{3-}$ ions)

$$
\mathrm{Ag}_{3} \mathrm{PO}_{4}(s) \rightleftharpoons 3 \mathrm{Ag}^{+}(a q)+\mathrm{PO}_{4}^{3-}(a q)
$$

I		0	0.020
C		3 x	x
E		3 x	$0.020+\mathrm{x}$

$1.3 \times 10^{-20}==(3 x)^{3} 0.020$
$6.5 \times 10^{-19}=27 x^{3}$
$\mathrm{x}^{3}=2.4 \times 10^{-20}$
$\mathrm{x}=2.9 \times 10^{-7} \mathcal{M}=$ molar solubility of $\mathcal{A g}_{3} \mathcal{P O}_{4}$ with a common ion
$\Rightarrow \mathcal{A d d i n g}$ common ion decreases the solubility of $\mathcal{A g}_{3} \mathcal{P O}_{4}$
3. Does AgCl precipitate from a solution containing $1.0 \times 10^{-5} \mathrm{M} \mathrm{Cl}^{-}$and $1.5 \times 10^{-4} \mathrm{M} \mathrm{Ag}^{+}$? $\mathrm{K}_{\mathrm{sp}}=1.8 \times 10^{-10}$

Calculate Q for $\mathrm{AgCl}(s) \rightleftharpoons \mathrm{Ag}^{+}+\mathrm{Cl}^{-}$
$Q=\left[\mathrm{Ag}^{+}\right][\mathrm{Cl}]=\left[1.5 \times 10^{-4}\right]\left[1.0 \times 10^{-5}\right]=1.5 \times 10^{-9}$
$1.5 \times 10^{-9}>1.8 \times 10^{-10} ; Q>\mathcal{K}_{s p}$
Equilibrium shifts left \& solid forms; $\mathfrak{A g C l}$ precipitates
4. If you mix 10.0 ml of $0.0010 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ with 5.0 ml of 0.015 M HCl , does PbCl_{2} precipitate? $\mathrm{K}_{\text {sp }}$ of $\mathrm{PbCl}_{2}=1.6 \times 10^{-5}$
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(a q)+2 \mathrm{HCl}(a q) \rightarrow \mathrm{PbCl}_{2}(s)+2 \mathrm{HNO}_{3}(a q)$
Net ionic: $\mathrm{Pb}^{2+}+2 \mathrm{Cl}^{-} \rightarrow \mathrm{PbCl}_{2}(s)$
Solubility reaction: $\mathrm{PbCl}_{2}(s) \rightleftharpoons \mathrm{Pb}^{2+}+2 \mathrm{Cl}^{-}$
Calculate Q for $\mathrm{PbCl}_{2}: ~ Q=\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{Cl}^{2}\right]^{2}$
$\left[\mathrm{Pb}^{2+}\right]=0.0010 \mathrm{M} \mathrm{Pb}^{2+}\left(\frac{10.0 \mathrm{ml}}{10.0 \mathrm{ml}+5.0 \mathrm{ml}}\right)=6.7 \times 10^{-4} \mathrm{M} \mathrm{Pb}^{2+}$
$\left[\mathrm{Cl}^{-}\right]=0.015 \mathrm{M} \mathrm{Cl}^{-}\left(\frac{5.0 \mathrm{ml}}{5.0 \mathrm{ml}+10.0 \mathrm{ml}}\right)=5.0 \times 10^{-3} \mathrm{M} \mathrm{Cl}^{-}$
$Q=\left(6.7 \times 10^{-4}\right)\left(5.0 \times 10^{-3}\right)^{2}=1.7 \times 10^{-8}$
$Q<\mathcal{K}_{\text {pp }}$ so $\mathrm{Pb}_{6} \mathrm{Cl}_{2}$ does not precipitate.

