COMMON ION & BUFFER PROBLEMS KEY

 What is the pH of a solution containing 0.30 M NH₃ and 0.15 M NH₄NO₃? K_{b} for NH₃ = 1.8x10⁻⁵

NH₃ is a weak base: NH₃ + H₂O \rightleftharpoons NH₄⁺ + OH⁻

 NH_4NO_3 is a salt: $NH_4NO_3 \rightarrow NH_4^+ + NO_3^-$; thus NH_4^+ is a "common ion"

$N\Pi_3 + \Pi_2 \cup = N\Pi_4 + \cup \Pi$					
	[NH₃] M	[H ₂ O]	$[NH_4^+]M$	[OH⁻] M	
	0.30		0.15	0	
С	-X		+x	+x	
Е	0.30 - x		0.15 + x	Х	

 $NH_0 + H_0 \longrightarrow NH_1^+ + OH^-$

K _b =	$[NH_4^+][OH^-]$
IX _D –	[<i>NH</i> ₃]

Approximation: ignore –x, +x terms: $1.8 \times 10^{-5} = \frac{(0.15)x}{(0.30)}$

 $x = [OH^{-}] = 3.6 \times 10^{-5} M$ $pOH = -log 3.6x10^{-5} = 4.44$ pH = 14 - 4.44 = 9.56

(This problem can also be solved using the $K_a \operatorname{rxn}: \operatorname{NH}_4^+ \rightleftharpoons \operatorname{NH}_3^+ + \operatorname{H}^+$; if you use this reaction, you must convert K_b to its corresponding K_a value.)

2) A buffer solution contains 0.20 M HCHO₂ and 0.30 M NaCHO₂. The volume of the solution is 125 mL. K_a for HCHO₂ = 1.8×10^{-4}

pH = 9.56

a) What is the pH of this buffer solution?

Salt: NaCHO₂ \rightarrow Na⁺ + CHO₂⁻

Acid ionization rxn:
$$HCHO_2 \rightleftharpoons H^+ + CHO_2^-$$

I	0.20	0	0.30
С	-X	+χ	+x
Е	0.20-x	+χ	0.30+x

pH = 3.92

Approximation: ignore -x, +x terms

$$K_{a} = \frac{[H^{+}][CHO_{2}^{-}]}{[HCHO_{2}]} \implies 1.8 \times 10^{-4} = \frac{x(0.30)}{(0.20)} \implies x = [H^{+}] = 1.2 \times 10^{-4}$$

$$pH = -log[H^+] = -log 1.2x10^{-4} = 3.92$$

b) If 50.0 mL of 0.10 M NaOH is added to the buffer solution, what is the pH? Strong base: NaOH \rightarrow Na⁺ + OH⁻

diluted so recalculate M: M HCHO₂ = $\frac{(0.20M)(125ml)}{(175ml)}$ = 0.14 M

M
$$CHO_2^- = \frac{(0.30M)(125ml)}{(175ml)} = 0.21 \text{ M};$$
 M $OH^- = \frac{(0.10M)(50.0ml)}{(175ml)} = 0.029 \text{ M}$

neutralization reaction:	OH^{-}	+	$\rm HCHO_2 \rightarrow$	CHO ₂ ⁻	+	H_2O
--------------------------	----------	---	--------------------------	-------------------------------	---	--------

Initial	0.02	.9 0.14	0.21	
Chang	je -0.02	29 -0.02	9 +0.02	9
Final	0	0.11	0.24	

Acid ionization rxn:	$HCHO_2 \rightleftharpoons H^{+}$	+	CHO ₂ ⁻
----------------------	-----------------------------------	---	-------------------------------

	0.11 0	0.24	
	-x +x	+χ	
).11-x +x	0.24+x	
$K_{a} = \frac{[H^+][CHO_2^-]}{[HCHO_2]} \Rightarrow$	1.8x10 ⁻⁴ =	$\frac{x(0.24)}{(0.11)} \Rightarrow $	x = [H ⁺] = 8.25x10 ⁻⁵
pH = -log[H ⁺] = -log 8	$3.25 \times 10^{-4} = 4.08$	рН	= 4.08
*For a buffer solution, pH	only rises a little	e if a small a	mount of strong base is added.
c) If 50.0 mL of 0.10 M HCI	l is added to the b	ouffer solutior	n, what is the pH?
Strong acid: HCI + I	$H_2O \rightarrow H_3O^+ + 0$	Cl	
diluted so recalculate			
M CHO ₂ ⁻ = $\frac{(0.30M)}{(175m)}$	$\frac{(125ml)}{ml}$ = 0.21 M	; M H ⁺ = $\frac{(0)}{(0)}$	$\frac{(10M)(50.0ml)}{(175ml)} = 0.029 \text{ M}$
neutralization reaction: +	H^+ + CHO ₂ ⁻ \rightarrow H	HCHO ₂	
Initial 0.0	029 0.21	0.14	
¥	029 -0.029 +		
		0.17	
Acid ionization rxn:			
С	0.17 0 -x +x 0.17-x +x	0.18 +x 0.18+x	
$K_{a} = \frac{[H^+][CHO_2^-]}{[HCHO_2]} \implies$	1.8x10 ⁻⁴ =	$\frac{x(0.18)}{(0.17)} \Rightarrow $	$x = [H^+] = 1.7 \times 10^{-4}$
pH = -log[H ⁺] = -log 1	$1.7 \times 10^{-4} = 3.77$	<mark>рН</mark>	= 3.77

* For a buffer, pH only drops a little when a small amount of strong acid is added.

TITRATION PROBLEMS KEY

- A 20.00 ml sample of 0.150 M HCl is titrated with 0.200 M NaOH. Calculate the pH of the solution after the following volumes of NaOH have been added: a) 0 mL; b) 10.00 mL; c) 15.0 mL; d) 20.00 mL.
- a) 0 ml of NaOH added only SA is present initially:

For strong acid:
$$[H^+] = [HCI] = 0.150 \text{ M HCI}$$

 $pH = -log[H^{+}] = -log(0.150) = 0.824$

b) 10.00 ml of NaOH

neutralization reaction: HCl + NaOH \rightarrow NaCl + H₂O SA SB

moles HCI =
$$20.00 ml \left(\frac{1L}{1000 mL}\right) \left(\frac{0.150 moles HCl}{L}\right) = 3.00 \times 10^{-3}$$
 moles HCI

moles NaOH =
$$10.00 ml \left(\frac{1L}{1000 mL}\right) \left(\frac{0.200 moles NaOH}{L}\right) = 2.00 \times 10^{-3} moles NaOH$$

After neutralization:

moles excess acid =
$$3.00 \times 10^{-3}$$
 moles - 2.00×10^{-3} moles = 1.00×10^{-3} moles HCl

$$M H^{+} = M HCI = \frac{1.00x10^{-3} moles}{0.03000 L} = 0.0333 M$$

$$pH = -\log [H^+] = -\log 0.0333 = 1.478$$

c) 15.0 mL of NaOH

From part b, moles HCl = 3.00×10^{-3} moles HCl

moles NaOH =
$$15.00 ml \left(\frac{1L}{1000 mL}\right) \left(\frac{0.200 moles NaOH}{L}\right) = 3.00 \times 10^{-3}$$
 moles NaOH moles HCl = moles NaOH

at equivalence pt: pH = 7.000 (for SA/SB titration)

d) 20.00 mL

from part b, moles HCl = 3.00×10^{-3} moles HCl

moles NaOH =
$$20.00 \, ml \left(\frac{1L}{1000 \, mL}\right) \left(\frac{0.200 \, moles \, NaOH}{L}\right) = 4.00 \times 10^{-3} \, moles \, NaOH$$

After neutralization:

moles excess base =
$$4.00 \times 10^{-3}$$
 moles - 3.00×10^{-3} moles = 1.00×10^{-3} moles NaOH

$$M OH^{-} = M NaOH = \frac{1.00 \times 10^{-3} \text{ moles}}{0.040 L} = 0.0250 \text{ M OH}^{-}$$
$$pOH = -\log 0.0250 = 1.602 \qquad pH = 14 - 1.602 = 12.398$$

- 2. A 50.0 mL sample of 0.50 M HC₂H₃O₂ acid is titrated with 0.150 M NaOH. K_a = 1.8×10^{-5} for HC₂H₃O₂. Calculate the pH of the solution after the following volumes of NaOH have been added: a) 0 mL; b) 166.7 mL; c) 180.0 mL.
- a) 0 ml of base; only a weak acid is initially present so $[H^{\dagger}] \neq [HA]$

, .			51				
		$HC_2H_3O_2 \rightleftharpoons$: H⁺ +	$C_2H_3O_2$			
		0.50	0	0			
	С	-X	Х	Х			
	E	0.50-x	Х	Х			
$K_{a} = \frac{[H^+][C]}{[HC_2]}$	$\frac{G_2H_3O_2}{H_3O_2}$	2 ⁻]	1.8x ⁻	$10^{-5} = \frac{x}{0.5}$	² 50		
[H ⁺] = x = 、	0.50($\overline{1.8x10^{-5})}$ = 3.	0x10 ⁻³				
pH = -log 3.	0x10⁻	³ = <mark>2.52</mark>					
b) 166.7 ml of NaC)H are	e added					
from part b, moles $HC_2H_3O_2 = 2.5 \times 10^{-2}$ moles $HC_2H_3O_2$							
moles NaOH = $166.7 ml \left(\frac{1L}{1000 mL}\right) \left(\frac{0.150 moles NaOH}{L}\right) = 2.50 \times 10^{-2} moles NaOH$							
neutralizatio	on: ⊢	$HC_2H_3O_2 + O_1$	$H^{-} \rightarrow C$	$_{2}H_{3}O_{2}^{-}$ +	H_2O	_	
1		0.025 0.0	250	0			

 I
 0.025
 0.0250
 0

 C
 -0.025
 -0.025
 +0.025

 Final
 0
 0
 0.025

only acetate remains - a weak base:

$$[C_2H_3O_2] = \frac{2.5 \times 10^{-2} \text{ moles}}{0.2167 L} = 0.115 \text{ M}$$

base hydrolysis: $C_2H_3O_2^- + H_2O \Longrightarrow HC_2H_3O_2 + OH^-$

Ι	0.115	0	0
С	-X	х	Х
Е	0.115-x	Х	Х

K_b for C₂H₃O₂- =
$$\frac{1 \times 10^{-14}}{1.8 \times 10^{-5}}$$
 = 5.6×10⁻¹⁰
K_b = $\frac{[HC_2H_3O_2][OH^-]}{[C_2H_3O_2^-]}$ 5.6×10⁻¹⁰ = $\frac{x^2}{0.115}$

x = $[OH^{-}] = \sqrt{0.115(5.6 \times 10^{-10})} = 8.0 \times 10^{-6}$ pOH = -log 8.0x10⁻⁶ = 5.10 pH = 14 - 5.10 = 8.90

- \Rightarrow At the equivalence point for a WA/SB titration, the pH > 7 due to the OH⁻ produced by the conjugate base hydrolysis reaction.
- c) 180.0 mL of NaOH are added

from part b, moles $HC_2H_3O_2 = 2.5x10^{-2}$ moles $HC_2H_3O_2$

moles NaOH = $180.00 ml \left(\frac{1L}{1000 mL}\right) \left(\frac{0.150 moles NaOH}{L}\right) = 2.7 \times 10^{-2}$ moles NaOH moles excess base = 2.7×10^{-2} moles - 2.5×10^{-2} moles = 2.0×10^{-3} moles NaOH M OH⁻ = M NaOH = $\frac{2.0 \times 10^{-3} moles}{0.23L} = 8.7 \times 10^{-3}$ M OH⁻ pOH = -log 8.7×10^{-3} = 2.06 pH = 14 - 2.06 = 11.94

*Excess NaOH remains - this is the primary source of OH⁻. We can neglect the hydrolysis of the conjugate base because this would contribute a relatively small amount of OH⁻ compared to the amount that comes directly from the excess NaOH.

SOLUBILITY PROBLEMS KEY

1. At 25 °C, 0.0349 g of Ag_2CO_3 dissolves in 1.0 L of solution. Calculate K_{sp} for this salt.

solubility =
$$\frac{0.0349 g Ag_2CO_3}{1.0L} \times \frac{1mol Ag_2CO_3}{275.8 g Ag_2CO_3} = 1.3 \times 10^{-4} \text{ M Ag}_2\text{CO}_3$$

Ag_2CO_3(s) $\Rightarrow 2\text{Ag}^+(aq) + \text{CO}_3^{2-}(aq)$
K_{sp} = $[\text{Ag}^+]^2[\text{CO}_3^{2-}]$
 $\frac{1}{C}$
 $2x$
 x
 E
 $2x$
 x
 x = molar solubility of Ag_2CO_3 = 1.3 \times 10^{-4} \text{ M}
 $[\text{CO}_3^{2-}] = x = 1.3 \times 10^{-4} \text{ M}$
 $[\text{Ag}^+] = 2x$ = $2(1.3 \times 10^{-4} \text{ M}) = 2.6 \times 10^{-4} \text{ M}$

 $K_{sp} = [2.6 \times 10^{-4}]^2 [1.3 \times 10^{-4}] = \frac{8.8 \times 10^{-12}}{100}$

- 2. Silver phosphate, Ag₃PO₄, is an insoluble salt that has a K_{sp} = 1.3 x 10⁻²⁰.
 - a) Calculate the molar solubility of Ag₃PO₄ in pure water.

	$Ag_3PO_4(s) \rightleftharpoons$	$3Ag^+(aq)$ ·	+ $PO_4^{3-}(aq)$	1)
I		0	0	
С		3x	Х	
Е		3x	x	

 $= (3x)^{3}x$

$$1.3 \times 10^{-20} = 27 \times 10^{-20}$$

$$x^4 = 4.8 \times 10^{-22}$$

$\mathbf{x} = 4.7 \times 10^{-6}$ M = molar solubility of Ag₃PO₄ in pure water

b) Calculate the molar solubility of Ag₃PO₄ in a solution containing 0.020 M Na₃PO₄ (a soluble salt).

 $K_{sp} = [Ag^+]^3 [PO_4^{3}]$

soluble salt: $Na_3PO_4 \rightarrow 3Na^+ + PO_4^{3-}$

Phosphate is the common ion:

 $[PO_4^{3-}] = [Na_3PO_4] = 0.020 \text{ M}$ (since 1 mol Na₃PO₄ forms 1 mol PO₄³⁻ ions)

	$Ag_3PO_4(s) \rightleftharpoons$	\ge 3Ag ⁺ (aq) +	$+ PO_4^{3}(aq)$
Ι		0	0.020
С		Зx	х
E		Зx	0.020+x

$$K_{sp} = [Ag^+]^3 [PO_4^{3-}]$$

1.3x10⁻²⁰ = = (3x)^30.020

$$6.5 \times 10^{-19} = 27 \times 10^{-19}$$

$$x^3 = 24x10^{-20}$$

x = 2.9x10⁻⁷M = molar solubility of Ag₃PO₄ with a common ion

 \Rightarrow Adding common ion decreases the solubility of Ag₃PO₄

3. Does AgCl precipitate from a solution containing 1.0 x 10^{-5} M Cl⁻ and 1.5 x 10^{-4} M Ag⁺? K_{sp} = 1.8 x 10^{-10}

Calculate Q for $AgCl(s) \Longrightarrow Ag^{+} + Cl^{-}$ Q = $[Ag^{+}][Cl^{-}] = [1.5x10^{-4}][1.0x10^{-5}] = \frac{1.5x10^{-9}}{1.5x10^{-9}}$ 1.5x10⁻⁹ > 1.8x10⁻¹⁰; Q > K_{sp}

Equilibrium shifts left & solid forms; AgCI precipitates

4. If you mix 10.0 ml of 0.0010 M Pb(NO₃)₂ with 5.0 ml of 0.015 M HCl, does PbCl₂ precipitate? K_{sp} of PbCl₂ = 1.6 x 10⁻⁵

 $Pb(NO_3)_2(aq) + 2HCl(aq) \rightarrow PbCl_2(s) + 2HNO_3(aq)$ Net ionic: $Pb^{2+} + 2Cl^- \rightarrow PbCl_2(s)$

Solubility reaction: $PbCl_2(s) \Longrightarrow Pb^{2+} + 2Cl^{-}$ Calculate Q for $PbCl_2$: Q = $[Pb^{2+}][Cl^{-}]^2$

$$[Pb^{2+}] = 0.0010 \text{ M } Pb^{2+} \left(\frac{10.0 \, ml}{10.0 \, ml + 5.0 \, ml}\right) = 6.7 \times 10^{-4} \text{ M } Pb^{2+}$$
$$[Cl^{-}] = 0.015 \text{ M } Cl^{-} \left(\frac{5.0 \, ml}{5.0 \, ml + 10.0 \, ml}\right) = 5.0 \times 10^{-3} \text{ M } Cl^{-}$$

 $Q = (6.7 \times 10^{-4})(5.0 \times 10^{-3})^2 = \frac{1.7 \times 10^{-8}}{1.7 \times 10^{-8}}$

 \mathbf{Q} < K_{sp}, so PbCl₂ does not precipitate.