CHAPTER 12 KINETICS

Rates and Mechanisms of Chemical Reactions

CHM152

GCC

Chemistry: OpenStax OER text

Kinetics

- Some chemical reactions occur almost instantaneously, while others are very slow.
- <u>Chemical Kinetics</u> study of factors that affect how fast a reaction occurs and the step-bystep processes involved in chemical reactions.

Factors That Affect Reaction Rate

- A. Concentration higher concentration of reactants increases rate
- B. Temperature higher T increases rate
- c. Catalysts accelerate reaction rate
- D. Surface area of solid smaller particles increase rate

Rate of Reaction Calculation

- $2H_2O_2(aq) \rightarrow 2H_2O(l) + O_2(g)$
- What is the rate of disappearance of H_2O_2 for each time interval?

$$rate = \frac{-\Delta[H_2 O_2]}{\Delta t} = \frac{-(M_f - M_i)}{t_f - t_i}$$

Time (hr)	[H ₂ O ₂], M	∆[H₂O₂], M	∆t (hr)	Rate of H ₂ O ₂ , M/hr
0	1.000			
		-0 500	6.00	0.0833
6.00	0.500	0.000	0.00	010000
12.00	0.250			
18.00	0.125			
24.00	0.0625			

Different ways to measure rate

- Initial rate is measured by the slope of the tangent line when initial reactant concentrations are measured (find the slope of the tangent line at time (t) = 0).
- Instantaneous rate is measured at a specific point in time (find the slope of a tangent line at a specified time).
- **Average rate** is measured as the average between two times. Use rate formula to calculate average rate.

Rate Expressions

Reaction: $2N_2O_5 \rightarrow 4NO_2 + O_2$

The rate of disappearance of N₂O₅ is twice the rate of formation of O₂ • To make rates equal, divide rates by their stoichiometric coefficients:

Rate =
$$-\frac{1}{2} \frac{\Delta [N_2 O_5]}{\Delta t} = \frac{1}{4} \frac{\Delta [NO_2]}{\Delta t} = \frac{\Delta [O_2]}{\Delta t}$$

E.g. For
$$3H_2 + N_2 \rightarrow 2NH_3$$
,

Write the rate expressions in terms of the disappearance of the reactants and the appearance of the products:

Rate Law continued

Rate = $k[A] \times [B]^{y}$

- x & y = order of reactants = exponent of reactant in rate law
- Overall Reaction Order = sum of all exponents in rate law
- Exponents cannot be obtained by looking at the equation; they are experimentally determined values.
- exponents are usually 0, 1 or 2

Reaction Order Example

E.g. $2CIO_2 + F_2 \rightarrow 2FCIO_2$ Given its experimental Rate law: Rate = k[CIO_2][F_2]

order of $CIO_2 =$ order of $F_2 =$ Overall order =

You cannot determine the reactant orders by looking at the coefficients in a chemical equation!

Determination of Rate Law from Initial Rates Data

To determine the rate law, we observe the effect of changing initial concentrations of reactants on the initial rate of reaction.

Exp. Data: Initial rates (Δ [Products]/ Δ t after 1-2% of limiting reactant has been consumed) are usually given; there is less chance of error from competing side reactions & reversible reactions.

Inspection Method

>A reactant is 1st order if doubling [A] causes rate to double; rate is directly proportional to [A].

>A reactant is 2^{nd} Order if doubling [A] causes rate to quadruple (or tripling [A] causes 3^2 increase in rate).

>A reactant is Zero order if changing [A] does not affect the rate.

Reaction Orders may also be found mathematically

To find the order for a specific reactant, examine what happens to the rate as the concentration of only that reactant changes (note: the rate constant k and other concentration terms cancel out, since they don't change!):

 $\left(\frac{concentration 2}{concentration 1}\right)^{\mathsf{x}} = \frac{Rate 2}{Rate 1}$

Repeat this process for each reactant.

e.g. Finding Rate Law using Initial Rates

Experiment		[B] M	Rate M/s
1	0.020	0.010	1.0
2	0.040	0.010	2.0
3	0.040	0.020	8.0
C	rder A = ?		
O	rder B = ?		

Rate = ?

k = ?

12.3 Determining a Rate Law • $5Br^{-}(aq) + BrO_{3}^{-}(aq) + 6H^{+}(aq) \rightarrow 3Br_{2}(aq) + 3H_{2}O(l)$ 0.10 0.010 0.15 1.2 x 10⁻³ 1 2 0.10 0.020 0.15 4.8 x 10⁻³ 3 0.30 0.010 0.15 3.6 x 10⁻³ 4 0.10 0.020 0.30 4.8 x 10⁻³

• Need two trials where only one reactant concentration changes (all others are constant).

• Compare changes in rate to changes in concentration to determine the order of the reactant (the exponent in the rate law).

IRL variables

t = time

- k = rate constant
- $[A]_0$ = initial concentration

$[A]_t$ = concentration at time t

>Units for A can be g, moles, M, torr, etc. >A_t is always less than A_0

1st order problems

Answers:

- 1. The rate law for the decomposition of N_2O_5 is Rate = k[N_2O_5], where k = 5.0 x 10⁻⁴ s⁻¹. What is the concentration of N_2O_5 after 1900 s, if the initial concentration is 0.56 M?
- 2. The first order reaction, $SO_2CI_2 \rightarrow SO_2 + CI_2$, has a rate constant of 0.17 h⁻¹. If the initial concentration of SO_2CI_2 is 1.25 x 10⁻³ M, how many seconds does it take for the concentration to drop to 0.31 x 10⁻³ M?

http://web.gccaz.edu/~ldiebolt/00152note/work/13kineticsproblemskey.pdf

1st Order IRL linear format • Can rearrange first-order IRL to get linear form: In [A] t = -kt + In [A], y = mx + b $y = ln [A]_t$ m = -k ; thus k = - slope x = t $b = ln [A]_o = y$ intercept

Half Life of First Order Reactions Half-life (t_{1/2}): time it takes for half (50%) of a reactant to be consumed. >50% of the reactant also remains unreacted. ◆How much of a sample remains after 3 half-lives?

Co Ro	Comparison Table for Typical Reaction Orders					
Order	Rate Law	Integrated Law	Linear graph	slope	Half-life	
0	Rate = k	$[A]_t = -kt + [A]_0$	[A] vs. t	-k	$t_{1/2} = \frac{[A]_0}{2k}$	
1	Rate = k[A]	$\ln\left(\frac{[A]_t}{[A]_0}\right) = -kt$	In [A] vs. t	-k	$t_{1/2} = \frac{0.693}{k}$	
2	Rate = k[A] ²	$\frac{1}{[A]_t} = kt + \frac{1}{[A]_0}$	$\frac{1}{[A]_t}$ vs. t	+k	$t_{1/2} = \frac{1}{k[A]_0}$	
					35	

Graphical Method of Determining Rate Law

- 1) Make 3 plots: [A] vs time; In [A] vs. time; and 1/[A] vs. time.
- The most linear plot gives the correct order for A; the other 2 graphs should be curves.

2nd order IRL example

The rate constant for a 2^{nd} order reaction is 0.54 M⁻¹s⁻¹ at 300°C. If the initial concentration is 0.62 M, what will be the final concentration after 145 seconds?

- >Many chemical reactions occur by a sequence of 2 or more steps.
- Each individual event in the overall reaction is called an elementary step.
- Molecularity: the number of molecules that react in an elementary step.

Unimolecular: 1 molecule $A \rightarrow products$

Termolecular (uncommon): $3A \rightarrow products \text{ or}$ $2A + B \rightarrow Products \text{ or}$ $A + B + C \rightarrow Products$

Intermediates

Intermediates are short lived species that are formed during the reaction, then are subsequently consumed \Rightarrow Its 1st a product, then a reactant

•Br₂NO in last example is intermediate

Rate Law for Elementary Step

For an elementary step, the rate law can be written using stoichiometric coefficients of the reactants. (molecularity = order).

E.g. Step 1: Rate = $k[Br_2][NO]$

Rate Determining Step

The slowest step in the reaction is the rate determining step; this step limits how fast products can form. Analogy: freeway during rush hour

The rate law for the overall rxn is determined by the rate of this slow step.

2-Step Reaction Mechanism

Step 1: NO₂(g) + NO₂(g) → NO(g) + NO₃(g)
 Step 2: NO₃(g) + CO(g) → NO₂(g) + CO₂(g)

• What is the overall equation? (Hint: Think Hess's Law - adding equations)

 NO_3 and one NO₂ cancels so net rxn is:

 $NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$

2 Step Reaction Mechanisms

- Rate laws for these elementary steps:
- Step 1: $NO_2(g) + NO_2(g) \rightarrow NO(g) + NO_3(g)$
- Step 1: rate = k[NO₂][NO₂] (bimolecular)
- Step 2: $NO_3(g) + CO(g) \rightarrow NO_2(g) + CO_2(g)$
- Step 2: rate = k[NO₃][CO] (bimolecular)
- **Intermediates**: product in one step and consumed in a later step
- Catalyst: reactant in one step and product in later step
- Note: Intermediates and catalyst cannot be part of overall reaction!

Rate Laws/Reaction Mechanisms

- Step 1 (slow):NO₂(g)+NO₂(g) \rightarrow NO(g) + NO₃(g)
- Step 2 (fast):NO₃(g)+CO(g) \rightarrow NO₂(g) +CO₂(g)
- Overall: $NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$
- a) What is the rate law for this 2-step reaction?
- b) What is the intermediate? Catalyst?
- a)

b)

<u>Collision Theory</u> Collision Frequency affects Reaction Rate

- ↑ concentrations of reactants result in more collisions, thus the reaction rate ↑.
- Temperatures cause
 molecules to move faster and
 collide more often, increasing
 the rate.

Most collisions don't cause a reaction because

- 1) molecules must have enough Kinetic Energy to:
- overcome electron cloud repulsions between atoms/molecules
- weaken/break reactant bonds
- 2) molecules must have the proper orientation to have an effective collision

Arrhenius equation

- E_a can be found graphically:
- plot of ln k (y axis) vs 1/T (x axis) yields a straight line.
- slope= $-E_a/R$; y intercept = ln A

• Thus
$$E_a = -R \cdot slope$$

If you have 2 sets of conditions, solve for $k_1,\,k_2,\,T_1,\,T_2$ or E_a using:

$$\ln\left(\frac{k_{1}}{k_{2}}\right) = \frac{E_{a}}{R}\left(\frac{1}{T_{2}} - \frac{1}{T_{1}}\right)$$

Arrhenius Equation

• Worked Example 12.11: Rate constants for the reaction $2\text{HI}(g) \rightarrow \text{H}_2(g) + \text{I}_2(g)$ were measured at five different temperatures. The data are shown in the table below. Determine the activation energy for this reaction. (This will be done in Kinetics lab!)

<i>T</i> (K)	$k (M^{-1} \cdot s^{-1})$	<i>1/T</i> (1/K)	ln k
555	3.52x10-7	0.00180	-14.86
575	1.22x10-6	0.00174	-13.62
645	8.59x10 ⁻⁵	0.00155	-9.362
700	1.16x10 ⁻³	0.00143	-6.759
781	3.95x10 ⁻²	0.00128	-3.231

Potential Energy Curves/ Energy profiles

transition state – a highly unstable species formed by the collision of the reactant molecules; arrangement of atoms at the top of the energy barrier.

 ΔH = Heat of reaction

 $\Delta H = \Delta H(\text{products}) - \Delta H(\text{reactants})$

 E_a shown for curve is the activation energy for the forward reaction, E_a (forward). This is the difference in energy between the transition state and the reactants.

Homogeneous Catalyst

• A homogeneous catalyst is one that is in the same phase as the reactants.

Example: $2H_2O_2(aq) \rightarrow 2H_2O(I) + O_2(g)$

 $\begin{array}{l} \mbox{Step 1. } H_2O_2(aq) \,+\, I^{-}(aq) \rightarrow H_2O(l) \,+\, IO^{-}(aq) \mbox{ Slow} \\ \mbox{Step 2. } H_2O_2(aq) \,+\, IO^{-}(aq) \rightarrow O_2(g) \,+\, H_2O(l) \,+\, I^{-}(aq) \mbox{ Fast} \end{array}$

Net rxn: $2H_2O_2 (aq) \rightarrow 2H_2O(I) + O_2(g)$

• $I^{-}(aq)$ is the catalyst

