CHAPTER 12 KINETICS

Rates and Mechanisms of Chemical Reactions

CHM152
GCC
Chemistry: OpenStax OER text

Creative Commons License

Images and tables in this file have been used from the following sources:

OpenStax: ©c) Creative Commons Attribution License 4.0.

- ChemWiki (CC BY-NC-SA 3.0): Unless otherwise noted, the StatWiki is licensed under a (cc) BY-NC-SA ns Attribution-Noncommercial-Share Alike S.0 United States License. Permissions beyond the scope of this license may be available at copyright@ucdavis.edu.
- Principles of General Chemistry (CC BY-NC-SA 3.0): http://2012books.lardbucket.org/pdfs/principles-of-general-chemistry-v1.0.pdf

Kinetics

- Some chemical reactions occur almost instantaneously, while others are very slow.
- Chemical Kinetics - study of factors that affect how fast a reaction occurs and the step-bystep processes involved in chemical reactions.

Rate of Reaction

the change in the amount of a reactant or product per unit time

Rate $=\frac{\Delta \text { concentration }}{\Delta \text { time }}=\frac{\Delta[A]}{\Delta t i m e}$

- [] means concentration
- Typical Rate Units: M/time or mol/(Lxtime)
$>$ Recall: $\mathrm{M}=$ moles solute/L of solution $>\mathrm{M}=\mathrm{mol} / \mathrm{L}=\mathrm{mol} \cdot \mathrm{L}^{-1}$

Factors That Affect Reaction Rate

A. Concentration - higher concentration of reactants increases rate
B. Temperature - higher T increases rate
C. Catalysts - accelerate reaction rate
D. Surface area of solid - smaller particles increase rate

Calculating Rates of Substances

- For the reaction: $\mathrm{A} \rightarrow \mathrm{B}$, we can measure rate of disappearance of reactants:

and appearance of products:
[A] decreases (include
- sign so rate is +)
(

$$
\text { rate }=\frac{\Delta[\mathrm{B}]}{\Delta t}
$$

Image from Principles of General Chemistry hitp://2012b0

Rates of Substances

- Reaction: $\mathrm{A} \rightarrow \mathrm{B}$

Rate of Reaction Calculation

- $2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})$
- What is the rate of disappearance of $\mathrm{H}_{2} \mathrm{O}_{2}$ for each time interval?

$$
\text { rate }=\frac{-\Delta\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]}{\Delta \mathrm{t}}=\frac{-\left(\mathrm{M}_{\mathrm{f}}-\mathrm{M}_{\mathrm{i}}\right)}{\mathrm{t}_{\mathrm{f}}-\mathrm{t}_{\mathrm{i}}}
$$

Time (hr)	[$\mathrm{H}_{2} \mathrm{O}_{2}$], M	$\underset{\mathbf{M}}{\Delta\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]_{1}}$	$\Delta t(h r)$	Rate of $\mathrm{H}_{2} \mathrm{O}_{2 r}$ M/hr
0	1.000			
		-0.500	6.00	0.0833
6.00	0.500			
12.00	0.250			
18.00	0.125			
24.00	0.0625			

Different Rates for $\mathbf{H}_{\mathbf{2}} \mathbf{O}_{\mathbf{2}}$ decomposition

Rate Characteristics

> Rate is a measure of the speed of a reaction.
> Rate can be expressed as rate of formation of products or rate of disappearance of reactants.
> Reaction rate is always positive: (-) sign used for reactants since they decrease with time (this gives rate a + sign.)
> Reaction rates decrease with time as reactants are used up.

Different ways to measure rate

- Initial rate is measured by the slope of the tangent line when initial reactant concentrations are measured (find the slope of the tangent line at time $(\mathrm{t})=0)$.
- Instantaneous rate is measured at a specific point in time (find the slope of a tangent line at a specified time).
- Average rate is measured as the average between two times. Use rate formula to calculate average rate.

Rate Expressions

Reaction: $2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow \mathbf{4 \mathrm { NO } _ { 2 }}+\mathrm{O}_{2}$
The rate of disappearance of $\mathrm{N}_{2} \mathrm{O}_{5}$ is twice the rate of formation of O_{2}

- To make rates equal, divide rates by their stoichiometric coefficients:

Rate $=-\frac{1}{2} \frac{\Delta\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{\Delta t}=\frac{1}{4} \frac{\Delta\left[\mathrm{NO}_{2}\right]}{\Delta t}=\frac{\Delta\left[\mathrm{O}_{2}\right]}{\Delta t}$

Example. For the reaction, $\mathbf{2} \mathrm{N}_{2} \mathrm{O}_{5} \rightarrow \mathbf{4} \mathrm{NO}_{2}+\mathrm{O}_{2}$, if the rate of decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ is $4.2 \times 10^{-7} \mathrm{~mol} /(\mathrm{L} \cdot \mathrm{s})$, what is the rate of appearance of (a) NO_{2}; (b) O_{2} ? (c) What is the rate of reaction?
a)
b)
c)

* Always express Rate as a + value

E.g. For $3 \mathrm{H}_{\mathbf{2}} \mathbf{+} \mathrm{N}_{\mathbf{2}} \boldsymbol{\rightarrow} \mathbf{2 N H}_{\mathbf{3}}$,

Write the rate expressions in terms of the disappearance of the reactants and the appearance of the products:

RATE LAW

Rate law: relationship between the reaction rate and the concentration of each reactant.

For a reaction $\mathbf{a A}+\mathbf{b B} \rightarrow$ Products

$$
\text { Rate }=k[A]^{x}[B]^{y}
$$

$k=$ Rate Constant: it is a numerical constant for a reaction at a given temperature.
[A], [B] are concentrations of reactants

Rate Law continued

Rate $=k[A]^{x}[B]^{y}$

- $x \& y=$ order of reactants $=$ exponent of reactant in rate law
- Overall Reaction Order $=$ sum of all exponents in rate law
- Exponents cannot be obtained by looking at the equation; they are experimentally determined values.
- exponents are usually 0, 1 or 2

Reaction Order Example

E.g. $2 \mathrm{ClO}_{2}+\mathrm{F}_{2} \rightarrow \mathbf{2} \mathrm{FCO}_{2}$

Given its experimental Rate law:
Rate $=\mathrm{k}\left[\mathrm{ClO}_{2}\right]\left[\mathrm{F}_{2}\right]$
order of $\mathrm{ClO}_{2}=$
order of $\mathrm{F}_{2}=$
Overall order =

You cannot determine the reactant orders by
looking at the coefficients in a chemical equation!

Determination of Rate Law from Initial Rates Data

To determine the rate law, we observe the effect of changing initial concentrations of reactants on the initial rate of reaction.

Exp. Data: Initial rates (Δ [Products] $/ \Delta$ t after 1 2% of limiting reactant has been consumed) are usually given; there is less chance of error from competing side reactions \& reversible reactions.

Reaction Orders may also be found mathematically

To find the order for a specific reactant, examine what happens to the rate as the concentration of only that reactant changes (note: the rate constant k and other concentration terms cancel out, since they don't change!):

$$
\left(\frac{\text { concentration } 2}{\text { concentration } 1}\right)^{\times}=\frac{\text { Rate } 2}{\text { Rate } 1}
$$

$>$ Repeat this process for each reactant.

12.3 Determining a Rate Law

- $5 \mathrm{Br}^{-}(\mathrm{aq})+\mathrm{BrO}_{3}^{-}(\mathrm{aq})+6 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 3 \mathrm{Br}_{2}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

Experiment	$[\mathrm{Br}](M)$	$\left[\mathrm{BrO}_{3}\right](M)$	$\left[\mathrm{H}^{-}\right](M)$	Initial Rate (M / s)
1	0.10	0.010	0.15	1.2×10^{-3}
2	0.10	0.020	0.15	4.8×10^{-3}
3	0.30	0.010	0.15	3.6×10^{-3}
4	0.10	0.020	0.30	4.8×10^{-3}

[^0]
Inspection Method

$>$ A reactant is $1^{\text {st }}$ order if doubling [A] causes rate to double; rate is directly proportional to [A].
$>$ A reactant is $2^{\text {nd }}$ Order if doubling [A] causes rate to quadruple (or tripling [A] causes 3^{2} increase in rate).
$>A$ reactant is Zero order if changing [A] does not affect the rate.

e.g. Finding Rate Law using Initial Rates			
Experiment	[A]M	[B]M	Rate M/s
1	0.020	0.010	1.0
2	0.040	0.010	2.0
3	0.040	0.020	8.0
Order $\mathrm{A}=$?			
Order $\mathrm{B}=$?			
Rate $=$?			
$\mathrm{k}=$?			

Integrated Rate laws

$1^{\text {st }}$ order Reaction

- For a reaction, $A \rightarrow B \quad$ Rate $=k[A]$
- Rate also expressed: Rate $=-\frac{\Delta[\mathrm{A}]}{\Delta \mathrm{t}}$
- Setting these equal: $-\frac{\Delta[A]}{\Delta t}=k[A]$
- Integrate to get $1^{\text {st }}$ order IRL (calculus ©)
$1^{\text {st }}$ order IRL: $\ln \frac{[A]_{t}}{[A]_{0}}=-k t$

IRL variables

$\mathrm{t}=$ time
$\mathrm{k}=$ rate constant
$[A]_{0}=$ initial concentration
$[A]_{t}=$ concentration at time t
$>$ Units for A can be g, moles, M, torr, etc. $>A_{t}$ is always less than A_{0}

$1^{\text {st }}$ order problems

1. The rate law for the decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ is Rate $=\mathrm{k}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$, where $\mathrm{k}=5.0 \times 10^{-4} \mathrm{~s}^{-1}$. What is the concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ after 1900 s , if the initial concentration is 0.56 M ?
2. The first order reaction, $\mathrm{SO}_{2} \mathrm{Cl}_{2} \rightarrow \mathrm{SO}_{2}+$ Cl_{2}, has a rate constant of $0.17 \mathrm{~h}^{-1}$. If the initial concentration of $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ is $1.25 \times 10^{-3} \mathrm{M}$, how many seconds does it take for the concentration to drop to $0.31 \times 10^{-3} \mathrm{M}$?

Answers:
http://web.gccaz.edu//diebolt/00152note/work/13kineticsproblemskey.pdf

$\mathbf{1 s t}^{\text {st }}$ Order IRL linear format

- Can rearrange first-order IRL to get linear form:

$$
\begin{aligned}
& \ln [A]_{t}=-k t+\ln [A]_{0} \\
& y=m x+b \\
& y=\ln [A]_{t} \\
& m=-k ; \text { thus } k=- \text { slope } \\
& x=t \\
& b=\ln [A]_{o}=y \text { intercept }
\end{aligned}
$$

$1^{\text {st }}$ order reaction

Only $1^{\text {st }}$ order reactions will give you a straight line when plotting $\operatorname{In}[A]_{t}$ vs. time!

Half Life of First Order Reactions

Half-life $\left(\mathrm{t}_{1 / 2}\right)$: time it takes for half (50\%) of a reactant to be consumed.
$>50 \%$ of the reactant also remains unreacted.
\star How much of a sample remains after 3 halflives?

Half-Life $1^{\text {st }}$ order Reactions

Derivation of $1^{\text {st }}$ order Half life

$$
\text { At } t=t_{1 / 2} \quad \Rightarrow[A]_{+}=\frac{1}{2}[A]_{0}
$$

Plug into IRL: $\ln \frac{\frac{1}{2}[A]_{0}}{[A]_{0}}=-k t_{1 / 2}$

$$
\ln 0.5=-k t_{1 / 2}
$$

$$
k t_{1 / 2}=0.693
$$

$>t_{1 / 2}$ does not depend on [A], only for $1^{\text {st }}$ order reactions!

1st $^{\text {st }}$ order half life problems

1. Cobalt-60 is a radioisotope that decays by firstorder kinetics and has a half-life of 5.26 years. The Co-60 in a radiotherapy unit must be replaced when the concentration of Co decreases to 75% of its initial value. When does this occur?
2. The first order reaction, $\mathrm{CH}_{3} \mathrm{NC} \rightarrow \mathrm{CH}_{3} \mathrm{CN}$, has a rate constant of $6.3 \times 10^{-4} \mathrm{~s}^{-1}$ at $230^{\circ} \mathrm{C}$.
a) What is the half-life of the reaction?
b) How much of a 10.0 g sample of $\mathrm{CH}_{3} \mathrm{NC}$ will remain after 5 half-lives?
c) How many seconds would be required for 75% of a $\mathrm{CH}_{3} \mathrm{NC}$ sample to decompose?
Answers:
http://web.gccaz.edu/~|diebolt/00152note/work/13kineticsproblemskey.pdf

Second Order Plot and IRL

Rate $=-\frac{\Delta[A]}{\Delta \dagger}=k[A]^{2}$
$2^{\text {nd }}$ order IRL: $\frac{1}{[A]_{\dagger}}=k t+\frac{1}{[A]_{0}}$

Only $2^{\text {nd }}$ order reactions will give you a straight line when plotting $\frac{1}{[A]_{t}}$ vs. time.

Zero Order Plot and IRL

Rate $=-\frac{\Delta[A]}{\Delta t}=k[A]^{0}=k$
0 order IRL: $[A]_{t}=-k t+[A]_{0}$

Only 0 order reactions will give you a straight line when plotting [A] vs. time.

Comparison Table for Typical Reaction Orders

Order	Rate Law	Integrated Law	Linear graph	slope	Half-life
0	Rate $=k$	$[\mathrm{~A}]_{t}=-\mathrm{kt}+[\mathrm{A}]_{0}$	$[\mathrm{~A}]$ vs. t	-k	$\mathrm{t}_{1 / 2}=\frac{[\mathrm{A}]_{0}}{2 \mathrm{k}}$
1	Rate $=\mathrm{k}[\mathrm{A}]$	$\ln \left(\frac{[\mathrm{A}]_{\mathrm{t}}}{[\mathrm{A}]_{0}}\right)=-\mathrm{kt}$	$\ln [\mathrm{A}]$ vs. t	-k	$\mathrm{t}_{1 / 2}=\frac{0.693}{\mathrm{k}}$
2	Rate $=\mathrm{k}[\mathrm{A}]^{2}$	$\frac{1}{[\mathrm{~A}]_{t}}=\mathrm{kt}+\frac{1}{[\mathrm{~A}]_{0}}$	$\frac{1}{[\mathrm{~A}]_{t}}$ vs. t	+k	$\mathrm{t}_{1 / 2}=\frac{1}{\mathrm{k}[\mathrm{A}]_{0}}$

Graphical Method of Determining Rate Law

1) Make 3 plots: $[A]$ vs time; $\ln [A]$ vs. time; and $1 /[\mathrm{A}]$ vs. time.
2) The most linear plot gives the correct order for A; the other 2 graphs should be curves.

What order is this reaction?

2nd order IRL example

The rate constant for a $2^{\text {nd }}$ order reaction is $0.54 \mathrm{M}^{-1} \mathrm{~s}^{-1}$ at $300^{\circ} \mathrm{C}$. If the initial concentration is 0.62 M , what will be the final concentration after 145 seconds?

Reaction Mechanisms

>Many chemical reactions occur by a sequence of 2 or more steps.
>Each individual event in the overall reaction is called an elementary step.
>Molecularity: the number of molecules that react in an elementary step.

Molecularity - based on \# of

 reactant molecules!Unimolecular: 1 molecule
A \rightarrow products
Bimolecular: 2 molecules
2A \rightarrow products or
$A+B \rightarrow$ products
Termolecular (uncommon):
3A \rightarrow products or
2A + B \rightarrow Products or
A + B $+\mathbf{C} \rightarrow$ Products

Mechanism example

E.g. A 2 step Overall rxn:
$\mathrm{Br}_{2}+2 \mathrm{NO} \rightarrow 2 \mathrm{BrNO}$

Step 1: $\mathrm{Br}_{2}+\mathrm{NO} \rightarrow \mathrm{Br}_{2} \mathrm{NO}$
(Bimolecular step)

Step 2: $\mathrm{Br}_{2} \mathrm{NO}+\mathrm{NO} \rightarrow 2 \mathrm{BrNO}$
(Bimolecular step)

Intermediates

Intermediates are short lived species that are formed during the reaction, then are subsequently consumed \Rightarrow Its $1^{\text {st }}$ a product, then a reactant $\cdot \mathrm{Br}_{2} \mathrm{NO}$ in last example is intermediate

Rate Determining Step

The slowest step in the reaction is the rate determining step; this step limits how fast products can form. Analogy: freeway during rush hour >The rate law for the overall rxn is determined by the rate of this slow step.

2 Step Reaction Mechanisms

- Rate laws for these elementary steps:
- Step 1: $\mathbf{N O}_{\mathbf{2}}(\mathrm{g})+\mathrm{NO}_{\mathbf{2}}(\mathrm{g}) \rightarrow \mathbf{N O}(\mathrm{g})+\mathrm{NO}_{\mathbf{3}}(\mathrm{g})$
- Step 1: rate $=\mathbf{k}\left[\mathrm{NO}_{2}\right]\left[\mathrm{NO}_{2}\right]$ (bimolecular)
- Step 2: $\mathrm{NO}_{\mathbf{3}}(\mathrm{g})+\mathbf{C O}(\mathrm{g}) \rightarrow \mathrm{NO}_{\mathbf{2}}(\mathrm{g})+\mathrm{CO}_{\mathbf{2}}(\mathrm{g})$
- Step 2: rate $=\mathbf{k}\left[\mathrm{NO}_{3}\right][\mathrm{CO}]$ (bimolecular)
- Intermediates: product in one step and consumed in a later step
- Catalyst: reactant in one step and product in later step
- Note: Intermediates and catalyst cannot be part of overall reaction!

Rate Law for Elementary Step

For an elementary step, the rate law can be written using stoichiometric coefficients of the reactants. (molecularity $=$ order).
E.g. Step 1: \quad Rate $=k\left[B r_{2}\right][\mathrm{NO}]$

2-Step Reaction Mechanism

- Step 1: $\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}(\mathrm{g})+\mathrm{NO}_{3}(\mathrm{~g})$
- Step 2: $\mathrm{NO}_{3}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$
- What is the overall equation? (Hint: Think

Hess's Law - adding equations)
$* \mathrm{NO}_{3}$ and one NO_{2} cancels so net rxn is:
$\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \rightarrow \mathrm{NO}(\mathrm{g})+\mathrm{CO}_{2}(\mathrm{~g})$

Rate Laws/Reaction Mechanisms

- Step 1 (slow): $\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}(\mathrm{g})+\mathrm{NO}_{3}(\mathrm{~g})$
- Step 2 (fast): $\mathrm{NO}_{\mathbf{3}}(\mathrm{g})+\mathbf{C O}(\mathrm{g}) \rightarrow \mathbf{N O}_{\mathbf{2}}(\mathrm{g})+\mathbf{C O}_{\mathbf{2}}(\mathrm{g})$
- Overall: $\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \rightarrow \mathrm{NO}(\mathrm{g})+\mathrm{CO}_{2}(\mathrm{~g})$
a) What is the rate law for this 2-step reaction?
b) What is the intermediate? Catalyst?
a)
b)

Example

Step $1 \mathrm{~S}_{2} \mathrm{O}_{8}{ }^{2-}+\mathrm{I}^{-} \rightarrow \mathbf{2} \mathrm{SO}_{4}{ }^{2-}+\mathrm{I}^{+}$slow Step $2 \mathrm{I}^{+}+\mathrm{I}^{-} \rightarrow \mathrm{I}_{2}$ fast
a) Which step is rate determining?
b) What is the intermediate?
c) What is the rate law for the slow step?
d) What is the overall rate law?

Collision Theory Collision Frequency affects Reaction Rate

- \uparrow concentrations of reactants result in more collisions, thus the reaction rate \uparrow.
- \uparrow Temperatures cause molecules to move faster and collide more often, increasing the rate.

Collision Theory

Molecules must collide to react!

Most collisions don't cause a reaction

 because1) molecules must have enough Kinetic Energy to:
> overcome electron cloud repulsions between atoms/molecules
> weaken/break reactant bonds
2) molecules must have the proper orientation to have an effective collision

Activation Energy, $\mathbf{E}_{\mathbf{a}}$

- energy barrier that molecules have to surmount in order to react. Energy is needed to break reactant bonds (endothermic process).
analogies:
- pushing a boulder up a hill
- getting started on an unpleasant task

Comments on E_{a}

- Only a small fraction of molecules have enough $K E$ to initiate reaction.
- E_{a} is different for each reaction.
- Reactions with low E_{a} are faster \& k is larger because more molecules can overcome E_{a}.
- At higher T, a larger fraction of molecules have enough KE to overcome E_{a}. (This is the main reason why the rxn rate increases dramatically as $T \uparrow$)

Orientation of molecules matters!

$\mathrm{NO}+\mathrm{O}_{3} \rightarrow \mathrm{NO}_{2}+\mathrm{O}_{2}$

Image from Principles of General Chemistry http:/2012book
-v1.0/si8-chemical-kinetics.html, CC-BY-NC-SA 3.0 license

Arrhenius equation

E_{a} can be found graphically:

- plot of $\ln \mathrm{k}$ (y axis) vs $1 / \mathrm{T}$ (x axis) yields a straight line.
- slope $=-E_{a} / R$; y intercept $=\ln A$
- Thus $\mathrm{E}_{\mathrm{a}}=-\mathrm{R}$. slope

If you have 2 sets of conditions, solve for $k_{1}, k_{2}, T_{1}, T_{2}$ or E_{a} using:

$$
\ln \left(\frac{\mathrm{k}_{1}}{\mathrm{k}_{2}}\right)=\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}_{2}}-\frac{1}{\mathrm{~T}_{1}}\right)
$$

Arrhenius Equation relates \boldsymbol{k} and \boldsymbol{T}

$$
\mathbf{k}=A e^{-E_{a} / R T}
$$

$\mathrm{R}=$ gas constant $=8.314 \mathrm{~J} / \mathrm{K}-\mathrm{mol}$
$\mathbf{T}=$ temperature in \mathbf{K}
$e^{-E_{a}} / R T=$ fraction of molecules that have enough
KE to react
$A=$ frequency factor (depends on \# of collisions that are properly oriented)
$>$ Linear form: $\ln k=-E_{a} / R T+\operatorname{In} A$

Arrhenius Equation

- Worked Example 12.11: Rate constants for the reaction $2 \mathrm{HI}(g) \rightarrow \mathrm{H}_{2}(g)+\mathrm{I}_{2}(g)$ were measured at five different temperatures. The data are shown in the table below. Determine the activation energy for this reaction. (This will be done in Kinetics lab!)

$\boldsymbol{T}(\mathbf{K})$	$\boldsymbol{k}\left(\boldsymbol{M}^{-\boldsymbol{1}} \cdot \mathbf{s}^{-\boldsymbol{1}}\right)$	$\boldsymbol{1} / \boldsymbol{T}(\mathbf{1} / \mathbf{K})$	$\boldsymbol{\operatorname { l n }} \boldsymbol{k}$
555	3.52×10^{-7}	0.00180	-14.86
575	1.22×10^{-6}	0.00174	-13.62
645	8.59×10^{-5}	0.00155	-9.362
700	1.16×10^{-3}	0.00143	-6.759
781	3.95×10^{-2}	0.00128	-3.231

Arrhenius Eq-2 point formula example

$\mathrm{E}_{\mathrm{a}}=185 \mathrm{~kJ} / \mathrm{mol}$ for $2 \mathrm{HI}(g) \rightarrow 2 \mathrm{H}_{2}(g)+\mathrm{I}_{2}(g)$, find the rate constant at $325^{\circ} \mathrm{C}$ if $\mathrm{k}=3.52 \times 10^{-7} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ at $282^{\circ} \mathrm{C}$

- $\mathrm{E}_{\mathrm{a}}=185 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$ so convert R to $\mathrm{kJ} / \mathrm{K} \cdot \mathrm{mol}$ (or E_{a} to $\mathrm{J} / \mathrm{mol}$)
- $\mathrm{R}=8.314 \frac{\mathrm{~J}}{\mathrm{~K} \cdot \mathrm{~mol}}\left(\frac{1 \mathrm{~kJ}}{1000 \mathrm{~J}}\right)=$

Convert T to Kelvin
${ }^{\circ} \mathrm{k}_{1}=3.52 \times 10^{-7} \mathrm{M}^{-1} \mathrm{~s}^{-1}, \mathrm{~T}_{1}=282^{\circ} \mathrm{C}+273=555 \mathrm{~K}$
${ }^{\circ} \mathrm{k}_{2}=$? $\quad \mathrm{T}_{2}=325^{\circ} \mathrm{C}=$

$$
\cdot \mathrm{k}_{2}=
$$

Potential Energy Curves/ Energy profiles

transition state - a highly unstable species formed by the collision of the reactant molecules; arrangement of atoms at the top of the energy barrier.
$\Delta \mathrm{H}=$ Heat of reaction
$\Delta H=\Delta H$ (products) $-\Delta H$ (reactants)
E_{a} shown for curve is the activation energy for the forward reaction, E_{a} (forward). This is the difference in energy between the transition state and the reactants.

P.E. Curve for Endothermic Reaction ($+\Delta \mathrm{H}$)

Homogeneous Catalyst

- A homogeneous catalyst is one that is in the same phase as the reactants.

Example: $2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{O}_{2}(\mathrm{~g})$
Step 1. $\left.\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{I}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{I}}\right)+\mathrm{IO}^{-}(\mathrm{aq})$ Slow
Step 2. $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{IO}^{-}(\mathrm{aq}) \rightarrow \mathrm{O}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{I}^{-}(\mathrm{aq})$ Fast

Net rxn: $2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{O}_{2}(\mathrm{~g})$

- $\mathrm{I}^{-}(\mathrm{aq})$ is the catalyst
P.E. Curve for Exothermic Reaction ($\Delta H=-$)

Catalysts

- A Catalyst is a substance that increases the rate of a reaction, but is not itself used up.
- A catalysts works by lowering E_{a} - usually they help weaken or break reactant bonds.
- A catalyst alters the reaction mechanism, but does not change the overall reaction.
- Catalyst may show up in experimental rate law - a reaction may have more than one rate law.
- Enzymes are large protein molecules with one or more active sites that serve as biological catalysts in living organisms.

Energy profiles with Catalyst

Note: E_{a} is lower but $\Delta \mathrm{H}$ is same.

HETEROGENOUS Catalysts

- Catalysts can be classified as heterogeneous: the catalyst and reactants are in different phases.

Ni is a catalyst for the reaction $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}$.

Catalytic Converters

- Convert pollutants (hydrocarbons, carbon monoxide, and nitric oxide) into $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{N}_{2}$, and O_{2} using a heterogeneous catalyst (Pt, Pd, $R h)$.

[^0]: - Need two trials where only one reactant concentration changes (all others are constant).
 - Compare changes in rate to changes in concentration to determine the order of the reactant (the exponent in the rate law).

