Part One: Multiple Choice. Choose the best answer for each question and write the corresponding letter in the provided blank. (22 pts)
_ 1. Which of these atoms is the smallest? Size \downarrow as we go \uparrow and size \downarrow as we go \rightarrow
A. Al
B. Li
C. I
D. O closest to top right on P. Table
E. S
_ 2. Which atom has the lowest ionization energy? IE \downarrow as we go \downarrow and IE \downarrow as we go \leftarrow
A. I
B. Sr closest to bottom left on
P. Table
C. Mg
D. P
E. F
\qquad 3. Which statement is true? Energy and frequency are directly related, wavelength is inverse
A. as energy decreases, wavelength increases
B. as energy increases, wavelength increases
C. as energy decreases, frequency increases
D. as frequency increases, wavelength increases
E. none of these statements are true
_ 4. Which ion is not isoelectronic with Ne ?
A. F^{-}
B. O^{2-}
C. Mg^{+2}
D. $\mathrm{K}^{+} 18 \mathrm{e}=\mathbf{A r}$
E. N^{3-}
\qquad 5. Which statement is not correct?
A. An ionic bond involves the transfer of electrons from the metal cation to the nonmetal anion. T
B. For polar covalent bonds, the electrons are not shared equally by the two nonmetal atoms. T
C. The atom closer to F will be the positive end of the dipole for a polar covalent bond. F
D. Metals lose electrons to form cations and nonmetals gain electrons to form anions. T
E. A molecule containing polar bonds may be nonpolar if the polar bonds cancel. T
\qquad 6. Arrhenius bases release this ion in water:
A. H^{+}
B. OH^{-}
C. O^{2-}
D. H^{-}
E. OH^{+}
\qquad 7. Which reactant is the Bronsted Lowry base?
$\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{HBr}(\mathrm{aq}) \rightarrow \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq})$
A. NH_{3} gains H^{+}ion
B. HBr
C. $\mathrm{NH}_{4}{ }^{+}$
D. Br
\qquad 8. An acidic solution will have a pH of:
A. Less than 7
B. equal to 7
C. greater than 7
\qquad 9. Which of the following ionic compounds is insoluble in water? Use solubility rules on PT
A. $\mathrm{Ba}(\mathrm{OH})_{2}$
B. PbCl_{2}
C. KBr
D. $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
E. SrS
\qquad 10. Which of the following is a strong electrolyte? Strong acid, strong base or soluble ionic
A. $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ strong acid
B. $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})$
C. AgCl
D. CH_{4}
E. MgS
\qquad 11. Which picture below represents a weak acid solution?
A. $\left|\begin{array}{ccc} & \text { SA } \\ & \mathrm{H}^{+} & \mathrm{Cl}^{-} \\ \mathrm{Cl}^{-} & & \mathrm{H}^{+} \\ \mathrm{H}^{+} & & \mathrm{Cl}^{-} \\ & \mathrm{Cl}^{-} & \mathrm{H}^{+}\end{array}\right|$
B. SB $\left.\left\lvert\, \begin{array}{cc}\mathrm{Na}^{+} & \mathrm{OH}^{-} \\ \mathrm{OH}^{-} & \mathrm{Na}^{+} \\ \mathrm{Na}^{+} & \mathrm{OH}^{-} \\ \mathrm{OH}^{-} & \mathrm{Na}^{+}\end{array}\right.\right]$
C. $\left.\begin{array}{c}\text { WA } \\ \hdashline \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \\ \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \\ \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \\ \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \\ \mathrm{H}^{+}\end{array}\right]$
D. $\left.\left\lvert\, \begin{array}{lll}\text { covalent } \\ \mathrm{CH}_{4} & & \mathrm{CH}_{4} \\ & \mathrm{CH}_{4} & \\ \mathrm{CH}_{4} & \mathrm{CH}_{4}\end{array}\right.\right]$

Part Two. Short answer Questions.

1. How many orbitals are in the second energy level? (2 pts) one s and three $p=\underline{4}$
2. What is the maximum number of electrons that a d sublevel can hold? (2 pts) $\underline{10}$
3. How many valence electrons does Si have? (2 pt) $\underline{4}$
4. What is the charge for a Group VIA nonmetal ion? (2 pt) -2
5. What is the total number of valence electrons for a sulfate ion, $\mathrm{SO}_{4}{ }^{-2}$? $(2 \mathrm{pt}) \mathbf{3 0}+\mathbf{2}=\mathbf{3 2}$
6. Write the element symbol that fits each of the following descriptions: (4 pts)
a. The alkali metal in the fourth period. Group IA element in $4^{\text {th }}$ row $\quad \mathrm{K}$
b. The halogen (VII A) with the highest electronegativity value. F has highest EN value! F
7. Which is larger? (2 pts) Mg or Mg^{2+} Mg (cations are smaller since they have less e-‘s).
8. Write the full electron configuration for Al^{+3}. (3pts) $13-3=10 e-\quad 1 s^{2} 2 s^{2} 2 p^{6}$
9. Write the full electron configuration for S. (5 pts) $16 e-1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4}$
10. For the following molecules: Draw the Lewis electron dot formula and answer the questions below. (Refer to the molecular geometry table.) (16 pts)
A. NF_{3}

$5+2(7)=26$ valence e-; $A B_{3} E$
Molecular shape: _Trigonal pyramid
Polar or nonpolar? \qquad polar
B. CS_{2}

$$
\ddot{s}=c=\ddot{s}:
$$

$4+2(6)=16$ valence e-; $A B_{2}$
Molecular shape: __linear
Polar or nonpolar? _nonpolar
11. Please circle the correct answer for each of the following (6 pts):
a. The bonds in $\mathrm{Ni}_{3} \mathrm{P}_{2}$ are
ionic polar covalent
nonpolar covalent
metallic
NI - P = metal/nonmetal
b. The O-F bonds in OF_{2} are ionic polar covalent nonpolar covalent metallic
O-F = different nonmetals
c. The bonds in Br_{2} are
ionic polar covalent nonpolar covalent metallic

$$
\mathrm{Br}-\mathrm{Br}=\text { same nonmetal }
$$

12. What is the formula for a compound formed by combining Al and S ions? (2 pts) $\mathrm{Al}^{+3} \mathrm{~S}^{-2}=\mathrm{Al}_{2} \mathrm{~S}_{3}$
13. Write the correct name for the given formula. (14 pts)

A. $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$	barium nitrate
B. CuO	opper (II) oxide
C. $\mathrm{Na}_{3} \mathrm{P}$	sodium phosphide
D. $\mathrm{Mn}_{2}\left(\mathrm{CO}_{3}\right)_{3}$	manganese (III) carbonate
E. $\mathrm{P}_{2} \mathrm{~S}_{5}$	diphosphorus pentasulfide

14. Give the chemical formula for the compound. (12 pts)

A. magnesium phosphate	$\mathrm{Mg}^{2+} \mathrm{PO}_{4}{ }^{-3}=\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
B. silicon tetrafluoride	SiF_{4}
C. nickel (II) sulfite	$\mathrm{Ni}^{+2} \mathrm{SO}_{3}{ }^{-2}=\quad \mathrm{NiSO}_{3}$
D. iron (III) chloride	$\mathrm{Fe}^{+3} \mathrm{Cl}^{-}=\mathrm{FeCl}_{3}$

15. What is the formula for nitric acid? (2 pts) HNO_{3}
16. Is $\mathrm{C}_{5} \mathrm{H}_{12}$ a covalent compound or ionic compound? (2 pts) Covalent

Bonus (circle true or false for each statement): (1 pt each)
True or False? When a bond is broken, heat energy is released.
True or False? The bond length for a covalent bond is less than the sum of the two atomic radii.

	Max Pts
Page 1. Multiple Choice	22
Page 2.	48
Page 3.	30
Bonus	2
Total Pts	102

