
CHM 130: Final Exam Practice Problems

1. Complete the following table:

Isotope	Mass number	# of protons	# of neutrons	# of electrons
strontium-90				
neon-19				
iron-55				

2. Consider Figures A-F below:

Indicate the figure represented as an element, a compound or a mixture AND a solid, a liquid or a gas.

A.	element	compound	mixture	solid	liquid	gas
B.	element	compound	mixture	solid	liquid	gas
C.	element	compound	mixture	solid	liquid	gas
D.	element	compound	mixture	solid	liquid	gas
E.	element	compound	mixture	solid	liquid	gas
F.	element	compound	mixture	solid	liquid	gas

3.	Circle all or vaporizing		tollown izzing	ng changes that subliming	are chemical : precipitating	burning	rusting	condensing
4.	Indicate the	e sym	ıbol for	• the element th	at fits each of the	following desc	criptions:	
		_ a	. The 1	noble gas in the	fifth period.			
		_ b	. The l	halogen with the	e greatest ionizatio	n energy.		
		_ c	. The a	alkaline earth m	netal in the third pe	riod.		
		_ d	. The a	alkali metal wit	h the greatest meta	llic character.		
		_ e	. The t	transition metal	in the fourth perio	d with the low	vest atomic n	umber.
		_ f.	The t	transition metal	in the fifth period	with the large	st atomic rad	ius.
5.	_		•	• •	ate is mixed with 2 f carbon dioxide, a			-
6.		he de	nsity of		is placed in a grad 1 g/cm ³ , what is the			
7.	For each the correspond I or M				dicate whether it is	s ionic (I) or n	nolecular (M)),and give the
		a.	nitric a	acid				
		b.	zinc ph	nosphate				
		c.	silver r	nitride				
		d.	ammor	nium chromate				
		e.	HC_2H_3	$\mathrm{O}_2(aq)$	<u></u>			
		f.	SrF_2					
		g.	$H_2S(aq$	<i>q)</i>				
		h.	N_2O_5					
		i.	Sn(CO	$(0,0)_{3}$				
		i	CoN					

		i.	CombinatiDecompos	pe of reaction (C) sition (D) colacement (SR	_ _	etters designated Double Replace Neutralization Combustion (I	cement/Precipitation ((N)	DR)
		A.	Na (s)	+ H ₂ C	O(l) →	$H_{2}(g) + $	NaOH (aq)	
		В.	Fe ₂ (SO	(aq) +	LiOH (ac	j)	Fe(OH) ₃ (s) +	_Li ₂ SO ₄ (aq)
		C.	C ₅ H ₆ O	(1) +	$O_2(g) \xrightarrow{\Delta}$	H ₂ O ($(g) + _{CO_2}(g)$	ı
		D.	H ₃ BO ₃	$(s) \xrightarrow{\Delta} _$	B ₂ O ₃	(s) +H	₂ O (l)	
9.						the formulas for for no reaction	the products and bala.	ance
	a.]	HBr (aq) + 1	$Mg(s) \rightarrow$				
	b.]	KOH (aq) +	H_3PO_4 (aq) →			
	c.	I	NaOH (aq) +	Al (s)	\rightarrow			
	d.	($C_5H_{12}(1) +$	$O_2(g) - \Delta$	→			
10.	Circ	cle all	the examples be	elow that are ϵ	equal to 1 me	ole:		
			47.88 g tin		44.01 g carl	oon dioxide	22.4 L Br ₂ (l) at	STP
		6.03	$\times 10^{22} H_2O \text{ mol}$	ecules	22.4 L O ₃ (§	g) at STP	58.44 g sodium c	hloride
11.	Cons	sider th	ne following rea	action: NH4 ⁺	(aq) + HS	$O_3^-(aq) \Rightarrow 0$	$H_2SO_3(aq) + NH_3$	(aq)
	Circ	le all t	hat apply for ed	ach of the follo	owing:			
	a.		(aq) is					
		an Ai	rhenius acid	a Bronsted-Lo	owry acid	an Arrhenius b	ase a Bronsted-L	owry base
	b.		3 ⁻ (aq) is					
		an Aı	rhenius acid	a Bronsted-Lo	owry acid	an Arrhenius b	ase a Bronsted-L	owry base
СНІ	M 130) Final	Exam Practice P	roblems			page 3 of 5	

- 12. Calculate the number of hydrogen atoms in 25.0 g of urea, (NH₂)₂CO.
- 13. Consider the following reaction: $2 \text{ Al}(s) + 6 \text{ HCl}(aq) \rightarrow 2 \text{ AlCl}_3(aq) + 3 \text{ H}_2(g)$
 - a. Calculate the volume of hydrogen gas produced when 5.00 g of aluminum reacts at STP.
 - b. Calculate the volume of hydrogen gas produced when 15.00 g of hydrochloric acid reacts at STP.
 - c. Identify the limiting reactant and the reactant in excess when 5.00 g of aluminum reacts with 15.00 g of hydrochloric acid at STP.
- 14. Consider the decomposition of sodium azide, NaN₃: $2 \text{ NaN}_3(s) \xrightarrow{spark} 2 \text{ Na}(s) + 3 \text{ N}_2(g)$ What is the percent yield if 50.0 g of sodium azide produced 29.7 g of nitrogen.
- 15. Identify the reactant oxidized, the reactant reduced, the oxidizing agent, and the reducing agent in each of the following redox reactions:
 - a. $Zn(s) + HCl(aq) \rightarrow ZnCl_2(aq) + H_2(g)$
 - b. $CH_4(s) + 2 O_2(g) \rightarrow 2 H_2O(g) + CO_2(g)$
 - c. $N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)$
 - d. $3 \operatorname{SnCl}_2(aq) + 2 \operatorname{Al}(s) \rightarrow 2 \operatorname{AlCl}_3(aq) + 3 \operatorname{Sn}(s)$
- 16. A 0.750 mL bubble at 4°C and 6.00 atm occupies what volume at 22.50°C and 725 mmHg?
- 17. Which of the following that *increase* from left to right across the Periodic Table? Atomic radius, Ionization energy, Metallic character, Electronegativity, # of valence electrons
- 18. Circle all of the following that *increase* from top to bottom down the Periodic Table? Atomic radius, Ionization energy, Metallic character, Electronegativity, # of valence electrons
- 19. For each of the following molecules: CF₄, NF₃, CH₂O, PCl₃, CH₂F₂, CO₂, SO₂, CO₃²⁻, SO₄²⁻, NO₂⁻
 - i. Draw the Lewis electron dot formula.
 - ii. Indicate the shape of the molecule and its bond angles.
 - iii. Indicate if the molecule is polar or nonpolar.
- 20. Consider the following six choices below:
 - A. ionic bond D. dispersion (London) forces G. metallic bonds
 - B. polar covalent bond E. dipole-dipole forces
 - C. nonpolar covalent bond F. hydrogen bond

Give the letter for the type of bond or intermolecular force described for each of the following:

- i. The bonds broken when $NH_3(l)$ boils.
- ii. The bonds holding atoms together in water.
- iii. The bonds broken when a sample of $Br_2(s)$ boils.
- iv. The bonds holding the atoms together in a Cl₂ molecule.
- v. The bonds broken when a sample of KBr melts.
- vi. The bonds holding broken when a sample of $H_2S(l)$ boils.
- vii. The bonds holding two HBr molecules together in a sample of HBr(l).
- viii. The bonds holding atoms together in a sample of HF(*l*).
- ix. The bonds holding atoms together in a sample of Pb(s).

	Which of the foll	0			0				s?
	a. boiling point	b. molar hea	at of vapori	zation	c. surface te	nsion (d. vapor pres	sure	
22.	Circle all of the f CH ₃ Cl(<i>l</i>)	Following that $C_{\text{graphite}}(s)$					Ag(s)	$I_2(s)$	

23. Circle all of the following that will be soluble in or miscible with olive oil (a nonpolar solvent): $\mathrm{CH_3Cl}(l)$ $CO_2(s)$ K_3PO_4 AgBr HCN(l) $C_{graphite}(s)$ Ag(s) $I_2(s)$