CHM 130: Chapter 15 Blackboard Homework Problems

- 1. Check all of the following that are properties of acids:
 - a) produce hydrogen ions, H⁺, in solution
 - b) produce hydroxide ions, OH⁻, in solution
 - c) taste bitter
 - d) taste sour
 - e) feel soapy or slippery
 - f) turn red litmus paper blue
 - g) turn blue litmus paper red
- 2. Check all of the following that are properties of bases:
 - a) produce hydrogen ions, H^+ , in solution
 - b) produce hydroxide ions, OH⁻, in solution
 - c) taste bitter
 - d) taste sour
 - e) feel soapy or slippery
 - f) turn red litmus paper blue
 - g) turn blue litmus paper red

3. Check all of the substances below that are strongly acidic:

- a) egg white, pH=7.9
- b) champagne, pH=3.7
- c) lime juice, pH=1.8
- d) NaCl, pH=7.0
- e) baking soda, pH=8.3

4. Check all of the substances below that are weakly acidic: f) oven cleaner, pH=13.5

- a) egg white, pH=7.9
- b) champagne, pH=3.7
- q) stomach acid, pH=1 h) carbonated soda, pH=4.0
- c) lime juice, pH=1.8 d) NaCl, pH=7.0
- e) baking soda, pH=8.3
- 5. Check all of the substances below that are **neutral**:
 - a) egg white, pH=7.9
 - b) champagne, pH=3.7
 - c) lime juice, pH=1.8
 - d) NaCl, pH=7.0
 - e) baking soda, pH=8.3

6. Check all of the substances below that are weakly basic:

- a) egg white, pH=7.9
- b) champagne, pH=3.7
- c) lime juice, pH=1.8
- d) NaCl, pH=7.0
- e) baking soda, pH=8.3
- 7. Check all of the substances below that are strongly basic:
 - a) egg white, pH=7.9
 - b) champagne, pH=3.7
 - c) lime juice, pH=1.8
 - d) NaCl, pH=7.0
 - e) baking soda, pH=8.3

Chapter 15 Blackboard Homework

1 of 2

f) oven cleaner, pH=13.5 g) stomach acid, pH=1

i) drain cleaner, pH=13

h) carbonated soda, pH=4.0

- i) drain cleaner, pH=13

- f) oven cleaner, pH=13.5
 - q) stomach acid, pH=1
 - h) carbonated soda, pH=4.0
 - i) drain cleaner, pH=13

f) oven cleaner, pH=13.5

h) carbonated soda, pH=4.0

g) stomach acid, pH=1

i) drain cleaner, pH=13

- f) oven cleaner, pH=13.5 g) stomach acid, pH=1 h) carbonated soda, pH=4.0

i) drain cleaner, pH=13

For problems 8-10 below, refer to your Chapter 15 notes:

- 8. An acid-base ______ is a solution that is pH sensitive and changes color with changes in the pH.
- 9. An acid-base ______ is the gradual addition of a standard solution to another solution of unknown concentration until the reaction between the two is complete as signaled by the indicator changing color.
- 10. The ______ of an acid-base neutralization reaction corresponds to the point when one reactant has completed reacted with the other as evidenced by the indicator changing color.
- 11. Determine the pH for the following: shampoo, $[H^+] = 0.000001 \text{ M}$
- 12. Determine the pH for the following: egg white, $[H^+] = 0.00000001 \text{ M}$
- 13. Determine the pH for the following: soda, $[H^+] = 0.001 \text{ M}$
- 14. Determine the pH for the following: coffee, $[H^+] = 0.00001 \text{ M}$
- 15. Calculate the pH of urine which has a pOH of 9.25.
- 16. Calculate the pOH of saliva which has a pH of 6.55.
- 17. Calculate the pOH of blood which has a pH of 7.50.
- 18. Pure water has a pH of _____.
- 19. Consider the following reaction: $H_2O(I) + NH_3(aq) \rightarrow NH_4^+(aq) + OH^-(aq)$. Check all the statements below that are correct.
 - a) $H_2O(I)$ is an Arrhenius acid and a Bronsted-Lowry acid.
 - b) H_2O (I) is an Arrhenius base and a Bronsted-Lowry base.
 - c) $H_2O(I)$ is an Arrhenius acid but not a Bronsted-Lowry acid.
 - d) $H_2O(I)$ is a Bronsted-Lowry base but not an Arrhenius base.
 - e) NH_3 (aq) is an Arrhenius acid and a Bronsted-Lowry acid.
 - f) NH_3 (aq) is an Arrhenius base and a Bronsted-Lowry base.
 - g) NH₃ (aq) is an Arrhenius acid but not a Bronsted-Lowry acid.
 - h) NH_3 (aq) is a Bronsted-Lowry base but not an Arrhenius base.
- 20. Consider the following reaction: HBr (aq) + $H_2PO_4^-$ (aq) $\rightarrow H_3PO_4$ (aq) + Br⁻ (aq). Check all the statements below that are correct.
 - a) HBr (aq) is an Arrhenius acid and a Bronsted-Lowry acid.
 - b) HBr (aq) is an Arrhenius base and a Bronsted-Lowry base.
 - c) HBr (aq) is an Arrhenius acid but not a Bronsted-Lowry acid.
 - d) HBr (aq) is a Bronsted-Lowry base but not an Arrhenius base.
 - e) $H_2PO_4^-$ (aq) is an Arrhenius acid and a Bronsted-Lowry acid.
 - f) $H_2PO_4^-$ (aq) is an Arrhenius base and a Bronsted-Lowry base.
 - g) $H_2PO_4^-$ (aq) is an Arrhenius acid but not a Bronsted-Lowry acid.
 - h) $H_2PO_4^-$ (aq) is a Bronsted-Lowry base but not an Arrhenius base.