CHM 130: Chapter 15 Homework Answer Key

- Check all of the following that are properties of acids:
 a) produce hydrogen ions, H⁺, in solution
 d) taste sour
 - g) turn blue litmus paper red
- 2) Check all of the following that are properties of bases:
 b) produce hydroxide ions, OH⁻, in solution
 c) taste bitter
 e) feel soapy or slippery
 f) turn red litmus paper blue
- 3) Check all of the substances below that are strongly acidic:c) lime juice, pH=1.8 g) stomach acid, pH=1

Explanation: **Strongly acidic** substances have a pH between 0 and 2. Thus, the following substances are strongly acidic: lime juice (pH=1.8) and stomach acid (pH=1).

4) Check all of the substances below that are weakly acidic:b) champagne, pH=3.7 h) carbonated soda, pH=4.0

Explanation: Weakly acidic substances have a pH between 2 and 7. Thus, the following substances are weakly acidic: champagne (pH=3.7) and carbonated soda (pH=4.0).

5) Check all of the substances below that are **neutral**: d) NaCl, pH=7.0

Explanation: Neutral substances have a pH exactly equal to 7. Thus, NaCl (pH=7.0) is neutral.

6) Check all of the substances below that are weakly basic:a) egg white, pH=7.9e) baking soda, pH=8.3

Explanation: Weakly basic substances have a pH between 7 and 12. Thus, the following substances are weakly basic: egg white (pH=7.9) and baking soda (pH=8.3).

7) Check all of the substances below that are strongly basic:f) oven cleaner, pH=13.5 i) drain cleaner, pH=13

Explanation: **Strongly basic** substances have a pH between 12 and 14. Thus, the following substances are strongly basic: oven cleaner (pH=13.5) and drain cleaner (pH=13)

8) An acid-base ______ is a solution that is pH sensitive and changes color with changes in the pH.

Answer: indicator

9) An acid-base ______ is the gradual addition of a standard solution to another solution of unknown concentration until the reaction between the two is complete as signaled by the indicator changing color.

Answer: titration

10) The ______ of an acid-base neutralization reaction corresponds to the point when one reactant has completed reacted with the other as evidenced by the indicator changing color.

Answer: endpoint

11) Determine the pH for the following: shampoo, $[H^+] = 0.000001 \text{ M}$

We can relate the hydrogen ion concentration, $[H^+]$, and pH as follows: $[H^+]=10^{-pH}$.

Thus, if $[H^+]=0.000001 \text{ M} = 10^{-6}$ pH=6.

12) Determine the pH for the following: egg white, $[H^+] = 0.00000001 \text{ M}$

Thus, if $[H^+]=0.00000001 \text{ M} = 10^{-8} \text{ pH=8.}$

13) Determine the pH for the following: soda, $[H^+] = 0.001 \text{ M}$

Thus, if $[H^+]=0.001 \text{ M} = 10^{-3} \text{ pH=3.}$

14) Determine the pH for the following: coffee, $[H^+] = 0.00001 \text{ M}$

Thus, if $[H^+]=0.00001 \text{ M} = 10^{-5} \text{ pH=5.}$

15) Calculate the pH of urine which has a pOH of 9.25.

Since pH + pOH = 14.00, pH = 14.00 - 9.25 = 4.75.

16) Calculate the pOH of saliva which has a pH of 6.55.

Since pH + pOH = 14.00, pOH = 14.00 - 6.55 = 7.45.

17) Calculate the pOH of blood which has a pH of 7.50.

Since pH + pOH = 14.00, pOH = 14.00 - 7.50 = 6.50.

- 18) Pure water has a pH of _____.Explanation: Pure water has a pH of _____. since it is neutral.
- 19) Consider the following reaction: $H_2O(l) + NH_3(aq) \rightarrow NH_4^+(aq) + OH^-(aq)$. Check all the statements below that are correct.

a) H₂O (l) is an Arrhenius acid and a Bronsted-Lowry acid.

h) NH₃ (aq) is a Bronsted-Lowry base but not an Arrhenius base.

Explanation: In the reaction above, NH₃ gained a proton (H⁺) while H₂O lost a proton (H⁺), so NH₃ is a Bronsted-Lowry base and H₂O is a Bronsted-Lowry acid. Because an Arrhenius acid also releases protons (H⁺), H₂O is also an Arrhenius acid. However, an Arrhenius base releases OH⁻. Because NH₃ does not release OH⁻, it is not an Arrhenius base.

20) Consider the following reaction: HBr (aq) + $H_2PO_4^-(aq) \rightarrow H_3PO_4(aq) + Br^-(aq)$. Check all the statements below that are correct.

a) HBr (aq) is an Arrhenius acid and a Bronsted-Lowry acid.

h) $H_2PO_4^-$ (aq) is a Bronsted-Lowry base but not a an Arrhenius base.

Explanation: In the reaction above, $H_2PO_4^-$ (aq) gained a proton (H^+) while HBr (aq) lost a proton (H^+), so $H_2PO_4^-$ (aq) is a Bronsted-Lowry base and HBr (aq) is a Bronsted-Lowry acid. Because an Arrhenius acid also releases protons (H^+), HBr (aq) is also an Arrhenius acid. However, an Arrhenius base releases OH⁻. Because $H_2PO_4^-$ (aq) does not release OH⁻, it is not an Arrhenius base.