## CHM 130: Chapter 15 Homework Answer Key

1) Check all of the following that are properties of acids:
a) produce hydrogen ions, $\mathrm{H}^{+}$, in solution
d) taste sour
g) turn blue litmus paper red
2) Check all of the following that are properties of bases:
b) produce hydroxide ions, $\mathrm{OH}^{-}$, in solution
c) taste bitter
e) feel soapy or slippery
f) turn red litmus paper blue
3) Check all of the substances below that are strongly acidic:
c) lime juice, $\mathrm{pH}=1.8$
g) stomach acid, $\mathrm{pH}=1$

Explanation: Strongly acidic substances have a pH between 0 and 2. Thus, the following substances are strongly acidic: lime juice $(\mathrm{pH}=1.8)$ and stomach acid $(\mathrm{pH}=1)$.
4) Check all of the substances below that are weakly acidic:
b) champagne, $\mathrm{pH}=3.7$
h) carbonated soda, $\mathrm{pH}=4.0$

Explanation: Weakly acidic substances have a pH between 2 and 7. Thus, the following substances are weakly acidic: champagne ( $\mathrm{pH}=3.7$ ) and carbonated soda ( $\mathrm{pH}=4.0$ ).
5) Check all of the substances below that are neutral:
d) $\mathrm{NaCl}, \mathrm{pH}=7.0$

Explanation: Neutral substances have a pH exactly equal to 7. Thus, $\mathrm{NaCl}(\mathrm{pH}=7.0)$ is neutral.
6) Check all of the substances below that are weakly basic:
a) egg white, $\mathrm{pH}=7.9$
e) baking soda, $\mathrm{pH}=8.3$

Explanation: Weakly basic substances have a pH between 7 and 12 . Thus, the following substances are weakly basic: egg white ( $\mathrm{pH}=7.9$ ) and baking soda ( $\mathrm{pH}=8.3$ ).
7) Check all of the substances below that are strongly basic:
f) oven cleaner, $\mathrm{pH}=13.5$ i) drain cleaner, $\mathrm{pH}=13$

Explanation: Strongly basic substances have a pH between 12 and 14. Thus, the following substances are strongly basic: oven cleaner $(\mathrm{pH}=13.5)$ and drain cleaner $(\mathrm{pH}=13)$
8) An acid-base $\qquad$ is a solution that is pH sensitive and changes color with changes in the pH .
Answer: indicator
9) An acid-base $\qquad$ is the gradual addition of a standard solution to another solution of unknown concentration until the reaction between the two is complete as signaled by the indicator changing color.

## Answer: titration

10) The $\qquad$ of an acid-base neutralization reaction corresponds to the point when one reactant has completed reacted with the other as evidenced by the indicator changing color.
Answer: endpoint
11) Determine the pH for the following: shampoo, $\left[\mathrm{H}^{+}\right]=0.000001 \mathrm{M}$

We can relate the hydrogen ion concentration, $\left[\mathrm{H}^{+}\right]$, and pH as follows: $\left[\mathrm{H}^{+}\right]=\mathbf{1 0}^{-\mathbf{p H}}$.

Thus, if $\left[\mathrm{H}^{+}\right]=0.000001 \mathrm{M}=\mathbf{1 0}^{-\mathbf{6}} \quad \mathbf{p H}=\mathbf{6}$.
12) Determine the pH for the following: egg white, $\left[\mathrm{H}^{+}\right]=0.00000001 \mathrm{M}$

Thus, if $\left[\mathrm{H}^{+}\right]=0.00000001 \mathrm{M}=\mathbf{1 0}^{-\mathbf{8}} \quad \mathbf{p H}=\mathbf{8}$.
13) Determine the pH for the following: soda, $\left[\mathrm{H}^{+}\right]=0.001 \mathrm{M}$

Thus, if $\left[\mathrm{H}^{+}\right]=0.001 \mathrm{M}=\mathbf{1 0}^{-\mathbf{3}} \quad \mathbf{p H}=\mathbf{3}$.
14) Determine the pH for the following: coffee, $\left[\mathrm{H}^{+}\right]=0.00001 \mathrm{M}$

Thus, if $\left[\mathrm{H}^{+}\right]=0.00001 \mathrm{M}=\mathbf{1 0}^{\mathbf{- 5}} \quad \mathbf{p H}=\mathbf{5}$.
15) Calculate the pH of urine which has a pOH of 9.25 .

Since $\mathbf{p H}+\mathbf{p O H}=\mathbf{1 4 . 0 0}, \quad \mathrm{pH}=14.00-9.25=\mathbf{4 . 7 5}$.
16) Calculate the pOH of saliva which has a pH of 6.55 .

Since $\mathbf{p H}+\mathbf{p O H}=\mathbf{1 4 . 0 0}, \quad \mathrm{pOH}=14.00-6.55=\mathbf{7 . 4 5}$.
17) Calculate the pOH of blood which has a pH of 7.50 .

Since $\mathbf{p H}+\mathbf{p O H}=\mathbf{1 4 . 0 0}, \quad \mathrm{pOH}=14.00-7.50=\mathbf{6 . 5 0}$.
18) Pure water has a pH of $\qquad$ _.
Explanation: Pure water has a pH of $\quad \mathbf{7}$ since it is neutral.
19) Consider the following reaction: $\mathbf{H}_{\mathbf{2}} \mathbf{O}(\mathbf{l})+\mathbf{N H}_{\mathbf{3}}(\mathbf{a q}) \rightarrow \mathbf{N H}_{\mathbf{4}}{ }^{+}(\mathbf{a q})+\mathbf{O H}^{-}(\mathbf{a q})$.

Check all the statements below that are correct.
a) $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ is an Arrhenius acid and a Bronsted-Lowry acid.
h) $\mathrm{NH}_{3}(\mathrm{aq})$ is a Bronsted-Lowry base but not an Arrhenius base.

Explanation: In the reaction above, $\mathbf{N H}_{3}$ gained a proton $\left(\mathbf{H}^{+}\right)$while $\mathbf{H}_{2} \mathrm{O}$ lost a proton $\left(\mathbf{H}^{+}\right)$, so $\mathrm{NH}_{3}$ is a Bronsted-Lowry base and $\mathrm{H}_{2} \mathrm{O}$ is a Bronsted-Lowry acid. Because an Arrhenius acid also releases protons $\left(\mathrm{H}^{+}\right), \mathrm{H}_{2} \mathrm{O}$ is also an Arrhenius acid. However, an Arrhenius base releases $\mathbf{O H}^{-}$. Because $\mathbf{N H}_{3}$ does not release $\mathbf{O H}^{-}$, it is not an Arrhenius base.
20) Consider the following reaction: $\mathbf{H B r}(\mathbf{a q})+\mathbf{H}_{\mathbf{2}} \mathbf{P O}_{4}^{-}(\mathbf{a q}) \rightarrow \mathbf{H}_{3} \mathbf{P O}_{\mathbf{4}}(\mathbf{a q})+\mathrm{Br}^{-}(\mathbf{a q})$. Check all the statements below that are correct.
a) $\mathrm{HBr}(\mathrm{aq})$ is an Arrhenius acid and a Bronsted-Lowry acid.
h) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})$ is a Bronsted-Lowry base but not a an Arrhenius base.

Explanation: In the reaction above, $\mathbf{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})$ gained a proton $\left(\mathbf{H}^{+}\right)$while $\mathbf{H B r}(\mathrm{aq})$ lost a proton $\left(\mathrm{H}^{+}\right)$, so $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathbf{a q})$ is a Bronsted-Lowry base and $\mathrm{HBr}(\mathbf{a q})$ is a Bronsted-Lowry acid. Because an Arrhenius acid also releases protons $\left(\mathbf{H}^{+}\right), \mathbf{H B r}(\mathbf{a q})$ is also an Arrhenius acid. However, an Arrhenius base releases $\mathrm{OH}^{-}$. Because $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})$ does not release $\mathbf{O H}^{-}$, it is not an Arrhenius base.

