New Chapter 10 Blackboard Homework Questions

1. The fertilizer ammonium sulfate, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$, is prepared by the reaction of ammonia, NH_{3}, with sulfuric acid:

$$
2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(\mathrm{aq})
$$

How many moles of ammonium sulfate are produced if 1.50 moles of ammonia gas react completely at STP?
2. Use the chemical equation in problem \#1 to determine how many moles of ammonia are required to react with 2.50 moles of sulfuric acid.
3. Use the chemical equation in problem \#1 to determine the mass of ammonium sulfate produced if 50.0 L of ammonia gas react completely at STP.
4. Use the chemical equation in problem \#1 to determine the volume (in L) of ammonia gas required to produce 150.0 g of ammonium sulfate at STP.
5. Propane, $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})$, burns in oxygen to produce carbon dioxide gas and steam:

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

How many moles of oxygen gas are required to react with 5.00 moles of propane?
6. Use the chemical equation in problem \#5 to determine how many moles of steam are produced when 10.0 moles of oxygen react completely.
7. Use the chemical equation in problem \#5 to determine what volume (in L) of carbon dioxide gas is produced when 5.00 g of propane is burned at STP.
8. Use the chemical equation in problem \#5 to determine what mass of propane must have burned to produce 75.0 L of steam at STP.
9. Use the chemical equation in problem \#5 to determine what mass of steam is produced when 11.5 g of oxyen react completely.
10. Fermentation is a complex chemical process of making wine by converting glucose into ethanol and carbon dioxide:
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ (s) $\rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (I) $+2 \mathrm{CO}_{2}$ (g)
Calculate the mass of ethanol produced if 5.00 g of glucose decomposes completely.
11. Use the chemical equation in problem \#10 to calculate the volume of carbon dioxide gas produced at STP when 100.0 g of glucose reacts.
12. Nitric oxide, $\mathrm{NO}(\mathrm{g})$, reacts with oxygen according to the following equation:
$2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
How many moles of NO_{2} are produced from 30.0 moles of oxygen?
13. Use the chemical equation in question \#12 to calculate the mass of O_{2} that must have reacted to produce 85.0 g of NO_{2}.
14. Consider the reaction between lead (II) nitrate and potassium iodide:
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{KI}(\mathrm{aq}) \rightarrow \mathrm{PbI}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})$
What is the precipitate produced in this reaction?
15. Use the chemical equation in question \#14 to calculate the moles of KNO_{3} produced from 15.0 moles of lead(II) nitrate.
16. Use the chemical equation in question \#14 to calculate the mass of Pbl_{2} produced from 75.00 g of potassium iodide.
17. Calculate the number of moles of Al that will react with 5.0 moles of HCl . Balance first!

$$
\ldots \mathrm{Al}(\mathrm{~s})+\ldots \mathrm{HCl}(\mathrm{aq}) \longrightarrow \ldots \mathrm{AlCl}_{3}(\mathrm{aq})+\ldots \mathrm{H}_{2}(\mathrm{~g})
$$

18. Use the chemical equation in question \#17 to calculate the mass of AICl_{3} produced from 25.0 g of hydrochloric acid.
19. Use the chemical equation in question \#17 to calculate the liters of of hydrogen gas produced from 15.00 g of aluminum.
20. Use the chemical equation in question \#17 to calculate the mass of aluminum that must have reacted to produce 18.0 grams of hydrogen gas.
