Chapter 10 Blackboard Homework key (Updated Sp 2012)

1) The fertilizer ammonium sulfate, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$, is prepared by the reaction of ammonia, NH_{3}, with sulfuric acid: $2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(\mathrm{aq})$
How many moles of ammonium sulfate are produced if 1.50 moles of ammonia react completely at STP?
Answer: The balanced equation indicates that 2 moles of NH_{3} react to produce 1 mole of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$.

$$
1.50 \text { moles } \mathrm{NH}_{3} \times \frac{1{\mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}}_{2 \mathrm{~mol} \mathrm{NH}_{3}}=0.750 \text { moles }\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}, ~}{\text { an }}
$$

2) Use the chemical reaction in problem \#1 to determine how many moles of ammonia are required to react with 2.50 moles of sulfuric acid.
Answer: The balanced equation indicates that 2 moles of NH_{3} react with 1 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$.

$$
2.50 \text { moles } \mathrm{H}_{2} \mathrm{SO}_{4} \times \frac{2 \mathrm{~mol} \mathrm{NH}_{3}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}=5.00 \text { moles } \mathrm{NH}_{3}
$$

3) Use the chemical reaction in problem \#1 to determine the mass of ammonium sulfate produced if 50.0 L of ammonia gas react completely at STP.
Answer: The balanced equation indicates that 2 moles of NH_{3} react to produce 1 mole of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$. Because the reaction occurs at STP, 1 mole of NH_{3} gas occupies 22.4 L .

$$
50.0 \mathrm{~L} \mathrm{NH}_{3} \times \frac{\mathrm{mol} \mathrm{NH}_{3}}{22.4 \mathrm{~L} \mathrm{NH}_{3}} \times \frac{1 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}}{2 \mathrm{~mol} \mathrm{NH}_{3}} \times \frac{132.17 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}}{\mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}}=148 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}
$$

4) Use the chemical reaction in problem \#1 to determine the volume (in L) of ammonia gas required to produce 150.0 g of ammonium sulfate at STP.
Answer: The balanced equation indicates that 1 mole of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ is produced when 2 moles of NH_{3} react. Because the reaction occurs at STP, 1 mole of NH_{3} gas occupies 22.4 L .

$$
150.0 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \times \frac{\mathrm{mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}}{132.17 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}} \times \frac{2 \mathrm{~mol} \mathrm{NH}_{3}}{\left.1 \mathrm{~mol} \mathrm{(NH}_{4}\right)_{2} \mathrm{SO}_{4}} \times \frac{22.4 \mathrm{~L} \mathrm{NH}_{3}}{\mathrm{~mol} \mathrm{NH}_{3}}=50.8 \mathrm{~L} \mathrm{NH}_{3}
$$

5) Propane, $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})$, burns in oxygen to produce carbon dioxide gas and steam. The balanced equation for the reaction is $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
How many moles of oxygen are required to react completely with 5.00 moles of propane?

$$
5.00 \text { moles } \mathrm{C}_{3} \mathrm{H}_{8} \times \frac{5 \mathrm{~mol} \mathrm{O}_{2}}{1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}}=25.0 \text { moles } \mathrm{C}_{3} \mathrm{H}_{8}
$$

6) Use the chemical equation in problem $\# 5$ to determine how many moles of steam are produced when 10.0 moles of oxygen react completely.

$$
10.0 \text { moles } \mathrm{O}_{2} \times \frac{4 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{5 \mathrm{~mol} \mathrm{O}_{2}}=8.00 \text { moles } \mathrm{H}_{2} \mathrm{O}
$$

7) Use the chemical equation in problem \#5 to determine what volume (in L) of carbon dioxide gas is produced when 5.00 g of propane is burned at STP.
Answer: The balanced equation indicates that 1 mole of $\mathrm{C}_{3} \mathrm{H}_{8}$ reacts to produce 3 moles of CO_{2}. Because the reaction occurs at STP, 1 mole of CO_{2} gas occupies 22.4 L .

$$
5.00 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8} \times \frac{\mathrm{mol} \mathrm{C}_{3} \mathrm{H}_{8}}{44.11 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8}} \times \frac{3 \mathrm{~mol} \mathrm{CO}_{2}}{1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}} \times \frac{22.4 \mathrm{~L} \mathrm{CO}_{2}}{\mathrm{~mol} \mathrm{CO}_{2}}=7.62 \mathrm{~L} \mathrm{CO}_{2}
$$

8) Use the chemical equation in problem \#5 to determine what mass of propane must have burned to produce 75.0 L of steam at STP.

Answer: The balanced equation indicates that 1 mole of $\mathrm{C}_{3} \mathrm{H}_{8}$ reacts to produce 4 moles of $\mathrm{H}_{2} \mathrm{O}$. Because the reaction occurs at STP, 1 mole of $\mathrm{H}_{2} \mathrm{O}$ gas occupies 22.4L.

$$
\text { 75.0 } \mathrm{L} \mathrm{H}_{2} \mathrm{O} \times \frac{\mathrm{mol} \mathrm{H}_{2} \mathrm{O}}{22.4 \mathrm{~L} \mathrm{H}_{2} \mathrm{O}} \times \frac{1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}}{4 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}} \times \frac{44.11 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8}}{\mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}}=36.9 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8}
$$

9) Use the chemical equation in problem \#5 to determine what mass of steam is produced when 11.5 g of oxyen react completely.

$$
11.5 \mathrm{gO}_{2} \times \frac{1 \mathrm{molO}_{2}}{32.00 \mathrm{~g} \mathrm{O}_{2}} \times \frac{4 \mathrm{molH}_{2} \mathrm{O}}{5 \mathrm{molO}_{2}} \times \frac{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{molH}_{2} \mathrm{O}}=\mathbf{5 . 1 8} \mathrm{g} \mathrm{H}_{\mathbf{2}} \mathrm{O}
$$

10) Fermentation is a complex chemical process of making wine by converting glucose into ethanol and carbon dioxide: $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s}) \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+2 \mathrm{CO}_{2}(\mathrm{~g})$
Calculate the mass of ethanol produced if 5.00 g of glucose decomposes completely.

$$
5.00 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \times \frac{\mathrm{mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{180.18 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}} \times \frac{2 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}}{1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}} \times \frac{46.08 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}}{\mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}}=2.56 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}
$$

11) Use the chemical equation in problem \#10 to calculate the volume of carbon dioxide gas produced at STP when 100.0 g of glucose reacts.

$$
100.0 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \times \frac{\mathrm{mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{180.18 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}} \times \frac{2 \mathrm{~mol} \mathrm{CO}_{2}}{1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}} \times \frac{22.4 \mathrm{~L} \mathrm{CO}_{2}}{\mathrm{~mol} \mathrm{CO}_{2}}=24.9 \mathrm{~L} \mathrm{CO}_{2}
$$

12) Nitric oxide, $\mathrm{NO}(\mathrm{g})$, reacts with oxygen to produce $\mathrm{NO}_{2}(\mathrm{~g}): 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$

How many moles of NO_{2} are produced from 30.0 moles of oxygen?

$$
30.0 \mathrm{~mol} \mathrm{O}_{2} \times \frac{2 \mathrm{~mol} \mathrm{NO}_{2}}{1 \mathrm{~mol} \mathrm{O}_{2}}=60.0 \mathrm{~mol} \mathrm{NO} 2
$$

13) Use the chemical equation in question $\# 12$ to calculate the mass of O_{2} that must have reacted to produce 85.0 g of NO_{2}.
$85.0 \mathrm{~g} \mathrm{~N}_{2} \times \frac{1 \mathrm{~mol} \mathrm{NO}_{2}}{46.01 \mathrm{~g} \mathrm{NO}_{2}} \times \frac{1 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{~mol} \mathrm{NO}_{2}} \times \frac{32.00 \mathrm{gO}_{2}}{1 \mathrm{~mol} \mathrm{O}_{2}}=29.6 \mathrm{~g} \mathrm{O}_{2}$
14) Consider the following reaction: $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{KI}(\mathrm{aq}) \rightarrow \mathrm{PbI}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})$ What is the precipitate produced in this reaction?
Answer: A precipitate is an insoluble solid formed when two aqueous solutions react. In the reaction above, the only solid is $\mathbf{P b I}_{2}$, so it is the precipitate.
15) Use the chemical equation in question \#14 to calculate the moles of KNO_{3} produced from 15.0 moles of lead(II) nitrate.
$15.0 \mathrm{molPb}\left(\mathrm{NO}_{3}\right)_{2} \times \frac{2 \mathrm{~mol} \mathrm{KNO}_{3}}{1 \mathrm{molPb}\left(\mathrm{NO}_{3}\right)_{2}}=30.0 \mathrm{~mol} \mathrm{KNO}_{3}$
16) Use the chemical equation in question $\# 14$ to calculate the mass of PbI_{2} produced from 75.00 g of potassium iodide.

$$
75.00 \mathrm{~g} \mathrm{KI}^{\mathrm{mol} \mathrm{KI}} \frac{\mathrm{~mol}}{166.00 \mathrm{~g} \mathrm{KI}} \times \frac{1 \mathrm{~mol} \mathrm{PbI}_{2}}{2 \mathrm{~mol} \mathrm{KI}^{2}} \times \frac{461.00 \mathrm{~g} \mathrm{PbI}_{2}}{\mathrm{~mol} \mathrm{PbI}_{2}}=104.1 \mathrm{~g} \mathrm{PbI} 2
$$

17) Calculate the number of moles of Al that will react with 5.0 moles of HCl . Balance first!

$$
\underline{2} \mathrm{Al}(\mathrm{~s})+\underline{6} \mathrm{HCl}(\mathrm{aq}) \longrightarrow \underline{2} \mathrm{AlCl}_{3}(\mathrm{aq})+\underline{3} \mathrm{H}_{2}(\mathrm{~g})
$$

$5.0 \mathrm{molHCl} \times \frac{2 \mathrm{~mol} \mathrm{Al}}{6 \mathrm{molHCl}}=1.7 \mathrm{~mol} \mathrm{Al}$
18) Use the chemical equation in question $\# 17$ to calculate the mass of AlCl_{3} produced from 25.0 g of hydrochloric acid.
$25.0 \mathrm{gHCl} \times \frac{1 \mathrm{~mol} \mathrm{HCl}^{3}}{36.46 \mathrm{~g} \mathrm{HCl}} \times \frac{2 \mathrm{~mol} \mathrm{AlCl}_{3}}{6 \mathrm{~mol} \mathrm{HCl}^{2}} \times \frac{133.33 \mathrm{~g} \mathrm{AlCl}_{3}}{1 \mathrm{~mol} \mathrm{AlCl}_{3}}=30.5 \mathrm{~g} \mathrm{AlCl} 3$
19) Use the chemical equation in question $\# 17$ to calculate the liters of of hydrogen gas produced from 15.00 g of aluminum.
$15.00 \mathrm{~g} \mathrm{Al} \times \frac{1 \mathrm{~mol} \mathrm{Al}}{26.98 \mathrm{~g} \mathrm{Al}} \times \frac{3 \mathrm{~mol} \mathrm{H}_{2}}{2 \mathrm{~mol} \mathrm{Al}^{2}} \times \frac{22.4 \mathrm{~L} \mathrm{H}_{2}}{1 \mathrm{molH}_{2}}=18.7 \mathrm{~L} \mathrm{H}_{2}$
20) Use the chemical equation in question $\# 17$ to calculate the mass of aluminum that must have reacted to produce 18.0 grams of hydrogen gas.
$18.0 \mathrm{gH}_{2} \times \frac{1 \mathrm{molH}_{2}}{2.02 \mathrm{~g} \mathrm{H}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{Al}^{2 \mathrm{molH}_{2}}}{} \times \frac{26.98 \mathrm{~g} \mathrm{Al}}{1 \mathrm{~mol} \mathrm{Al}}=1.60 \times 10^{2} \mathrm{~g} \mathrm{Al}$

