Part 1. Multiple Choice. Mark your answers on the provided **scantron form**. Use a **phone #** for the 10 digit ID #. Write and bubble your name and ID # (your phone #) on the information side and bubble the same PHONE # on the answer side <u>AGAIN</u>. (40 points; 4 points each)

1. Consider the reaction $2Cr(OH)_3 + BrO_3^- + 4OH^- \rightarrow Br^- + 2CrO_4^{2-} + 5H_2O$. If the rate of disappearance of $Cr(OH)_3$ is 3.0×10^{-3} M/s, what is the rate of appearance of H₂O?

A. 1.2×10^{-3} M/s B. 1.5×10^{-3} M/s C. 3.0×10^{-3} M/s D. 1.5×10^{-2} M/s E. 7.5 x 10^{-3} M/s

- The rate law for a given reaction is Rate = k[A][B]³. If the concentration of A is quadrupled and the concentration of B is tripled, the reaction rate would increase by a factor of _____.
 A. 12
 B. 27
 C. 36
 D. 108
 E. 192
- 3. The half-life is 115 minutes for a first order reaction. The rate constant, k, in s⁻¹, is A. $1.00 \times 10^{-4} \text{ s}^{-1}$ B. $6.03 \times 10^{-3} \text{ s}^{-1}$ C. 0.362 s^{-1} D. $4.78 \times 10^{3} \text{ s}^{-1}$ E. $9.96 \times 10^{3} \text{ s}^{-1}$
- 4. The following graphs were prepared from experimental data for a reactant, A. What is the correct order of A?

A. zero order B. first order C. second order D. insufficient information provided

5. A mechanism for a naturally occurring reaction that destroys ozone is:

Step 1: $O_3(g) + HO(g) \rightarrow HO_2(g) + O_2(g)$

Step 2: HO₂ (g) + O (g) \rightarrow HO (g) + O₂ (g)

Which statement is **<u>not true</u>** for this mechanism

- A. There is not enough information to determine which step is slower.
- B. The overall reaction is: $O_3(g) + O(g) \rightarrow 2 O_2(g)$
- C. The overall rate law must be rate = $k[O_3][O]$.
- D. Both steps are bimolecular.
- E. HO is a catalyst and and HO_2 is an intermediate.
- 6. For the following reaction, $2H_{2(g)} + O_{2(g)} \leftrightarrows 2H_2O(g)$, $K_c = 2.5 \times 10^4$.

What is K_c for the reaction $2 H_2O(g) \leftrightarrows 2 H_2(g) + O_2(g)$, K_c = ?

 $A. \ 4.0 \times 10^{-5} \qquad B. \ -2.5 \times 10^4 \qquad C. \ 2.5 \times 10^4 \qquad D. \ 1.6 \times 10^2 \qquad E. \ 6.3 \times 10^{-3}$

7. The rate law for the reaction NO₂ + CO \rightarrow NO + CO₂ is **Rate = k[NO₂]²**. Which one of the following mechanisms is consistent with this experimental rate law?

A. $NO_2 + CO \rightarrow N + CO_2$ slow	B. NO ₂ + 2CO \rightarrow N + 2CO ₂	slow
$N + NO_2 \rightarrow NO$ fast	N + NO ₂ \rightarrow 2NO	fast
C. $NO_2 + NO_2 \rightarrow NO_3 + NO$ fast	D. $NO_2 + NO_2 \rightarrow NO_3 + NO$	slow
$NO_3 + CO \rightarrow NO_2 + CO_2$ slow	$NO_3 + CO \rightarrow NO_2 + CO_2$	fast

8. For the following diagram, which statement is <u>not</u> correct?

Reaction Path

- A. X is the heat of reaction.
- B. The products are lower in energy than the reactants.
- C. Z is the transition state.
- D. Y is the activation energy for the reaction.
- E. The reaction is endothermic.

9. All the following statements are true **EXCEPT**

- A. in a series of stepwise reactions, the rate-determining step is the slow one.
- B. the rate constant for a reaction changes when temperature is changed.
- C. a catalyst increases the rate of reaction by decreasing the heat of reaction, ΔH .
- D. the rates of most chemical reactions change with time.
- E. the rate constant does not depend on the reactant concentrations.

10. Arrange the following reactions in order of increasing tendency to go to completion.

1) $2NOCl(g) \leftrightarrows 2NO(g) + Cl_2(g)$ $K_p = 1.7 \times 10^{-2}$ 2) $N_2O_4(g) \leftrightarrows 2NO_2(g)$ $K_p = 1.5 \times 10^3$ 3) $2SO_3(g) \leftrightarrows 2SO_2(g) + O_2(g)$ $K_p = 1.3 \times 10^{-5}$ 4) $2NO_2(g) \leftrightarrows 2NO(g) + O_2(g)$ $K_p = 5.9 \times 10^{-5}$ From least to most complete:

A. 2 < 1 < 4 < 3 B. 3 < 1 < 4 < 2 C. 4 < 3 < 1 < 2 D. 4 < 3 < 2 < 1 E. 3 < 4 < 1 < 2

Part 2. Short answer (18 points)

1. Consider the following equilibrium reaction:

 $CO_2(g)$ + $2H_2O(g)$ + $4Cu(s) \Rightarrow 4CuO(s)$ + $CH_4(g)$ $\Delta H = +559 \text{ KJ}$

a) Write the K_c expression for this equilibrium reaction. (3 pts)

For b-e, predict the effect of the following changes on the equilibrium position (15 pts):

b)	Adding CO ₂ (left, right, no change)	
c)	Increasing the volume (left, right, no change)	
d)	Removing CH4 (left, right, no change)	

- e) Decreasing the temperature (left, right, no change) _____
- f) What happens to the value of K_c (increase, decrease or stay the same), if we decrease the temperature?

Part Three. Numerical Problems. You must SHOW YOUR WORK to receive full credit! Make sure you circle your final answer, and express your final answer with the proper number of sig figs and the proper units! (42 points)

Trial	[A] (M)	[B] (M)	Rate $\left(\frac{M}{s}\right)$
1	0.200	0.250	1.1 x 10 ⁻⁴
2	0.800	0.250	4.4 x 10 ⁻⁴
3	0.200	0.750	9.9 x 10 ⁻⁴

1. Given the initial reaction rate data for the following reaction: 3A + B \rightarrow C

a) What trials should be used to find the order for A? (1 pt)

b) Order for A = ____. (2 pts)

c) What trials should be used to find the order for B? (1 pt) _____

d) Order for B = ____. (2 pts)

e) Write the rate law for this reaction. Make sure to use the orders found above! (2 pts)

f) Calculate the rate constant, k, and include the proper units. Show your work! (4 pts)

2. The decomposition of hydrogen peroxide is described by the equation: $2H_2O_2 \rightarrow 2H_2O + O_2$. The reaction is first order in H_2O_2 and the rate constant is $1.8 \times 10^{-5} \text{ s}^{-1}$ at a certain temperature. The initial concentration of H_2O_2 is 1.45 M. What will the concentration of H_2O_2 be after 58 hours? (8 pts)

A mixture of 0.415 M I₂(g) and 0.415 M Br₂(g) is placed in a container and undergoes the following reaction. Calculate the concentrations of I₂, Br₂, and IBr after the system has reached equilibrium. (10 pts)

 $I_2(g)$ + $Br_2(g) \leftrightarrows 2IBr(g)$ K_c = 121

4. For the following reaction, K_c = 55 $\,$ at 280 $^\circ C.$

```
N_2(g) + 3 H_2(g) \leftrightarrows 2 NH_3(g)
```

```
a) Calculate Q when 0.50 moles of N<sub>2</sub>, 1.0 moles of H<sub>2</sub> and 5.0 moles of NH<sub>3</sub> are placed in a 2.0 L flask: (5 pts)
```

- b) Comparing your calculated Q to K_c, which statement is true? (Circle one) (2 pts)
 - i. the reaction is at equilibrium
 - ii. the reaction will shift right to attain equilibrium
 - iii. the reaction will shift left to attain equilibrium
- c) What is the value of K_p at 280 °C? (5 pts)

	pts earned	pts possible
Multiple choice		40
Page 2		18
Page 3		20
Page 3		22
Total Pts		100