Part 1. Multiple Choice. (40 points; 4 points each)

1. Consider the reaction $2 \mathrm{Cr}(\mathrm{OH})_{3}+\mathrm{BrO}_{3}^{-}+4 \mathrm{OH}^{-} \rightarrow \mathrm{Br}^{-}+2 \mathrm{CrO}_{4}^{2-}+5 \mathrm{H}_{2} \mathrm{O}$. If the rate of disappearance of $\mathrm{Cr}(\mathrm{OH})_{3}$ is $3.0 \times 10^{-3} \mathrm{M} / \mathrm{s}$, what is the rate of appearance of $\mathrm{H}_{2} \mathrm{O}$?
A. $1.2 \times 10^{-3} \mathrm{M} / \mathrm{s}$
B. $1.5 \times 10^{-3} \mathrm{M} / \mathrm{s}$
C. $3.0 \times 10^{-3} \mathrm{M} / \mathrm{s}$
D. $1.5 \times 10^{-2} \mathrm{M} / \mathrm{s}$
E. $7.5 \times 10^{-3} \mathrm{M} / \mathrm{s}$ $\frac{3.0 \times 10^{-3} \mathrm{~mol} \mathrm{Cr}(\mathrm{OH})_{3}}{\mathrm{~L} \cdot \mathrm{~s}} \times \frac{5 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{2 \mathrm{~mol} \mathrm{Cr}(\mathrm{OH})_{3}}=7.5 \times 10^{-3} \mathrm{M} / \mathrm{s} \mathrm{H} \mathrm{H}$
2. The rate law for a given reaction is Rate $=\mathbf{k}[\mathbf{A}][B]^{3}$. If the concentration of A is quadrupled and the concentration of B is tripled, the reaction rate would increase by a factor of \qquad .
A. 12
B. 27
C. 36
D. 108
E. 192

Rate $=k[4]^{1}[3]^{3}=k \times 4 \times 27=k \times 108$
3. The half-life is 115 minutes for a first order reaction. The rate constant, $k, \mathrm{in} \mathrm{s}^{-1}$, is
A. $1.00 \times 10^{-4} \mathrm{~s}^{-1}$
B. $6.03 \times 10^{-3} \mathrm{~s}^{-1}$
C. $0.362 \mathrm{~s}^{-1}$
D. $4.78 \times 10^{3} \mathrm{~s}^{-1}$
E. $9.96 \times 10^{3} \mathrm{~s}^{-1}$ $115 \mathrm{~min} \times \frac{60 \mathrm{~s}}{1 \mathrm{~min}}=6900 \mathrm{~s} \quad \mathrm{k}=\frac{0.693}{6900 \mathrm{~s}}=1.00 \times 10^{-4} \mathrm{~s}^{-1}$
4. The following graphs were prepared from experimental data for a reactant, A. What is the correct order of A?

[A]

A. zero order
B. first order
C. second order
D. insufficient information provided
5. A mechanism for a naturally occurring reaction that destroys ozone is:

Step 1: $\mathrm{O}_{3}(\mathrm{~g})+\mathrm{HO}(\mathrm{g}) \rightarrow \mathrm{HO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
Step 2: $\mathrm{HO}_{2}(\mathrm{~g})+\mathrm{O}(\mathrm{g}) \rightarrow \mathrm{HO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
Which statement is not true for this mechanism
A. There is not enough information to determine which step is slower. T
B. The overall reaction is: $\mathrm{O}_{3}(\mathrm{~g})+\mathrm{O}(\mathrm{g}) \rightarrow 2 \mathrm{O}_{2}(\mathrm{~g}) \mathrm{T}$
C. The overall rate law must be rate $=\mathbf{k}\left[\mathrm{O}_{3}\right][\mathrm{O}] . \mathrm{F}$
D. Both steps are bimolecular. T
E. HO is a catalyst and and HO_{2} is an intermediate. T
6. For the following reaction, $2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \leftrightarrows 2 \mathrm{H}_{2} \mathrm{O}(g), \mathrm{K}_{\mathrm{c}}=2.5 \times 10^{4}$. What is K_{c} for the reaction $2 \mathrm{H}_{2} \mathrm{O}(g) \leftrightarrows 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}), \mathrm{K}_{\mathrm{c}}=$?
A. 4.0×10^{-5}
B. -2.5×10^{4}
C. 2.5×10^{4}
D. 1.6×10^{2}
E. 6.3×10^{-3}

Reaction is reversed, so K is inverse: $K=\frac{1}{2.5 \times 10^{4}}=4.0 \times 10^{-5}$
7. The rate law for the reaction $\mathrm{NO}_{2}+\mathrm{CO} \rightarrow \mathrm{NO}+\mathrm{CO}_{2}$ is Rate $=\mathbf{k}\left[\mathrm{NO}_{2}\right]^{2}$. Which one of the following mechanisms is consistent with this experimental rate law?
A. $\mathrm{NO}_{2}+\mathrm{CO} \rightarrow \mathrm{N}+\mathrm{CO}_{2}$ slow
B. $\mathrm{NO}_{2}+2 \mathrm{CO} \rightarrow \mathrm{N}+2 \mathrm{CO}_{2}$ slow
$\mathrm{N}+\mathrm{NO}_{2} \rightarrow \mathrm{NO}$ fast
$\mathrm{N}+\mathrm{NO}_{2} \rightarrow 2 \mathrm{NO}$ fast
C. $\mathrm{NO}_{2}+\mathrm{NO}_{2} \rightarrow \mathrm{NO}_{3}+\mathrm{NO}$ fast
D. $\mathrm{NO}_{2}+\mathrm{NO}_{2} \rightarrow \mathrm{NO}_{3}+\mathrm{NO}$ slow
$\mathrm{NO}_{3}+\mathrm{CO} \rightarrow \mathrm{NO}_{2}+\mathrm{CO}_{2}$ fast

Rate $=\mathrm{k}\left[\mathrm{NO}_{2}\right]^{2}$ so $\mathbf{2} \mathrm{NO}_{2}$ molecules are reactants in slow step
8. For the following diagram, which statement is not correct?

A. X is the heat of reaction. T
B. The products are lower in energy than the reactants. F - the product level is higher
C. Z is the transition state. T
D. Y is the activation energy for the reaction. T
E. The reaction is endothermic. T
9. All the following statements are true EXCEPT
A. in a series of stepwise reactions, the rate-determining step is the slow one. T
B. the rate constant for a reaction changes when temperature is changed. T
C. a catalyst increases the rate of reaction by decreasing the heat of reaction, $\Delta \mathrm{H}$. F - catalyst lowers E_{a} but ΔH stays the same
D. the rates of most chemical reactions change with time. T
E. the rate constant does not depend on the reactant concentrations. T; Rate depends on concentration but the rate constant, k, is a constant $-k$ only varies with T !
10. Arrange the following reactions in order of increasing tendency to go to completion.

1) $2 \mathrm{NOCl}(g) \leftrightarrows 2 \mathrm{NO}(g)+\mathrm{Cl}_{2}(g) \quad \mathrm{K}_{\mathrm{p}}=1.7 \times 10^{-2}$ second largest
2) $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \leftrightarrows 2 \mathrm{NO}_{2}(\mathrm{~g})$
$K_{p}=1.5 \times 10^{3}$ largest
3) $2 \mathrm{SO}_{3}(g) \leftrightarrows 2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g)$
$\mathrm{K}_{\mathrm{p}}=1.3 \times 10^{-5}$ smallest (1.3 is smaller than 5.9 !)
4) $2 \mathrm{NO}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
$\mathrm{K}_{\mathrm{p}}=5.9 \times 10^{-5}$ second smallest
From least to most complete:
A. $2<1<4<3$
B. $3<1<4<2$
C. $4<3<1<2$
D. $4<3<2<1$
E. $3<4<1<2$

Part 2. Short answer (18 points)

1. Consider the following equilibrium reaction:

Heat $+\mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)+4 \mathrm{Cu}(s) \leftrightarrows 4 \mathrm{CuO}_{(s)}+\mathrm{CH}_{4(g)} \quad \Delta \mathrm{H}=+559 \mathrm{KJ}=$ endo
a) Write the K_{c} expression for this equilibrium reaction. (3 pts)

Omit solids and liquids! $\quad \mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{CH}_{4}\right]}{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}$
For b-e, predict the effect of the following changes on the equilibrium position (15 pts):
b) Adding CO_{2} (left, right, no change)
c) Increasing the volume (left, right, no change)

Right
left

d) Removing CH_{4} (left, right, no change)
e) Decreasing the temperature (left, right, no change) left
f) What happens to the value of K_{c} (increase, decrease or stay the same), if we decrease Consider the following equilibrium reaction: decreases

Part Three. Numerical Problems. You must SHOW YOUR WORK to receive full credit! Make sure you circle your final answer, and express your final answer with the proper number of sig figs and the proper units! (42 points)

1. Given the initial reaction rate data for the following reaction: $3 A+B \rightarrow C$
$\left.\begin{array}{cccc}\text { Trial } & {[A](M)} & {[B](M)} & \text { Rate }\left(\frac{M}{s}\right) \\ \hline 1 & {\left[\begin{array}{ll}0.200 & 0.250 \\ 0.800 & 0.250 \\ 2 & 0.200\end{array}\right.} & {\left[\begin{array}{c}1.1 \times 10^{-4} \\ 4.4 \times 10^{-4} \\ 3\end{array}\right.} & 0.750\end{array}\right]$
a) What trials should be used to find the order for A? (1 pt) \qquad
Pick trials where A changes, B same:
b) Order for $\mathrm{A}=\underline{1}$. (2 pts)

$$
\left(\frac{0.800}{0.200}\right)^{x}=\left(\frac{4.4 \times 10^{-4}}{1.1 \times 10^{-4}}\right) ; 4^{x}=\mathbf{4} ; \mathbf{x}=1
$$

c) What trials should be used to find the order for B? (1 pt) 1 \& 3

Pick trials where B changes, A same:
d) Order for $\mathrm{B}=$ 2. (2 pts)

$$
\left(\frac{0.750}{0.250}\right)^{y}=\left(\frac{9.9 \times 10^{-4}}{1.1 \times 10^{-4}}\right) ; \mathbf{3}^{y}=9 ; y=2
$$

e) Write the rate law for this reaction. Make sure to use the orders found above! (2 pts)

$$
\text { Rate }=k[A][B]^{2}
$$

d) Calculate the rate constant, k , and include the proper units. Must show set-up! (4 pts)

$$
\mathbf{k}=\frac{\text { Rate }}{[A][B]^{2}}=\frac{1.1 \times 10^{-4} \mathrm{M} / \mathrm{s}}{(0.200 M)(0.250 \mathrm{M})^{2}} \quad \mathbf{k}=8.8 \times 10^{-3} \mathrm{M}^{-2} \mathbf{s}^{-1}
$$

2. The decomposition of hydrogen peroxide is described by the equation: $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$. The reaction is first order in $\mathrm{H}_{2} \mathrm{O}_{2}$ and the rate constant is $1.8 \times 10^{-5} \mathrm{~s}^{-1}$ at a certain temperature. The initial concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ is 1.45 M . What will the concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ be after 58 hours? (8 pts)

$$
\begin{gathered}
{\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]_{0}=1.45 \mathrm{M} \quad \mathrm{k}=1.8 \times 10^{-5} \mathrm{~s}^{-1} \quad \mathrm{t}=58 \text { hours }\left(\frac{60 \mathrm{~min})}{1 \mathrm{hr}}\right)\left(\frac{60 \mathrm{~s}}{1 \mathrm{~min}}\right)=2.088 \times 10^{5} \mathrm{~s}} \\
\ln \frac{[\mathbf{A}]_{\mathrm{t}}}{[\mathbf{A}]_{0}}=-\mathbf{k t} \Rightarrow \quad \ln \frac{\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]_{\mathrm{t}}}{1.45 \mathrm{M}}=-1.8 \times 10^{-5} \mathrm{~s}^{-1}\left(2.088 \times 10^{5} \mathrm{~s}\right) \\
\ln \frac{\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]_{\mathrm{t}}}{1.45 \mathrm{M}}=-3.7584 \Rightarrow \quad \frac{\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]_{\mathrm{t}}}{1.45 \mathrm{M}}=\mathrm{e}^{-3.7584}=2.332 \times 10^{-2} \\
{\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]_{\mathrm{t}}=(1.45)\left(2.332 \times 10^{-2}\right)=3.4 \times 10^{-2} \mathrm{M}} \\
\text { or } \mathrm{n}=58 \mathrm{~h} / 10.69 \mathrm{~h}=5.42 \Rightarrow[\mathrm{~A}]_{+}=(0.5)^{n}[\mathrm{~A}]_{0}=(0.5)^{5.42} .(1.45 \mathrm{M})=3.4 \times 10^{-2} \mathrm{M}
\end{gathered}
$$

3. A mixture of $0.415 \mathrm{M}_{2}(g)$ and $0.415 \mathrm{M} \mathrm{Br}_{2}(g)$ is placed in a container and undergoes the following reaction. Calculate the concentrations of $\mathrm{I}_{2}, \mathrm{Br}_{2}$, and IBr after the system has reached equilibrium. (10 pts)
$\mathrm{I}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{IBr}(\mathrm{g}) \mathrm{K}_{\mathrm{c}}=121$

$\mathrm{I}_{2}(g)$				
	$\mathrm{Br}_{2}(g)$	\leftrightarrows	$\operatorname{lBr}(g)$	
$\mathrm{K}_{\mathrm{c}}=121$				
	0.415	0.415	0	
	-x	-x	+2 x	
Equilibrium, M	$0.415-\mathrm{x}$	$0.415-\mathrm{x}$	2 x	

$$
\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{IBr}]^{2}}{\left[\mathrm{I}_{2}\right]\left[\mathrm{Br}_{2}\right]} \quad 121=\frac{(2 \mathrm{x})^{2}}{(0.415-\mathrm{x})(0.415-\mathrm{x})}=\frac{(2 \mathrm{x})^{2}}{(0.415-\mathrm{x})^{2}} \quad \Leftarrow \text { perfect square }
$$

Take square root both sides: $11=\frac{2 x}{(0.415-x)} \quad \Rightarrow 11(0.415-x)=2 x \Rightarrow$

$$
4.565-11 x=2 x \quad \Rightarrow \quad 4.565=13 x \text { thus, } x=\frac{4.565}{13}=0.351(3 \mathrm{sf})
$$

Equilibrium Concs: $\left[\mathrm{I}_{2}\right]=\left[\mathrm{Br}_{2}\right]=0.415-0.351=\mathbf{0 . 0 6 4} \mathbf{~ M}$; $[\mathrm{Br}]=2(0.351)=\mathbf{0 . 7 0 2} \mathbf{~ M}$

$$
\left[I_{2}\right]=\left[\mathrm{Br}_{2}\right]=0.064 \mathrm{M}[\mathrm{IBr}]=0.702 \mathrm{M}
$$

4. For the following reaction, $\mathrm{K}_{\mathrm{c}}=55$ at $280^{\circ} \mathrm{C}$.

$$
\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \leftrightarrows 2 \mathrm{NH}_{3}(g)
$$

a) Calculate Q when 0.50 moles of $\mathrm{N}_{2}, 1.0$ moles of H_{2} and 4.0 moles of NH_{3} are placed in a 2.0 L flask: (5 pts)
$\left[\mathrm{N}_{2}\right]=\frac{0.50 \mathrm{~mol}}{2.0 \mathrm{~L}}=0.25 \mathrm{M} ;\left[\mathrm{H}_{2}\right]=\frac{1.0 \mathrm{~mol}}{2.0 \mathrm{~L}}=0.50 \mathrm{M} ;\left[\mathrm{NH}_{3}\right]=\frac{5.0 \mathrm{~mol}}{2.0 \mathrm{~L}}=2.0 \mathrm{M}$
$\mathrm{Q}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}=\frac{(2.0)^{2}}{(0.25)(0.5)^{3}}=\frac{4}{0.03125}=\mathbf{1 2 8} \quad Q=\mathbf{1 3 0}$
b) Comparing your calculated Q to K_{c}, which statement is true? (Circle one) (2 pts)
i. the reaction is at equilibrium
ii. the reaction will shift right to attain equilibrium
iii. the reaction will shift left to attain equilibrium
Q is larger than K so there are too many products present
c) What is the value of K_{p} at $280^{\circ} \mathrm{C}$? (5 pts)
$K_{p}=55(0.08206 * 553)^{-2}=0.0267 \quad K_{p}=0.027$

	pts possible
Multiple choice	40
Page 2	18
Page 3	20
Page 4	22
Total Pts	100

5 pts extra credit added for review from $1^{\text {st }}$ week of class

