Part One: Multiple choice. Make sure to write your name on the information side of the scantron and bubble your 10 digit PHONE \# for the ID \# on the answer side. (Use the phone \# you provided on Exam 1.) Bubble Form A on the answer side. (33 pts: 3 pts each)

1. The pH of Budweiser beer is 4.30 . The $\left[\mathrm{OH}^{-}\right]$is \qquad and the solution would be \qquad .
A. $5.0 \times 10^{-5} \mathrm{M}$, acidic
B. $5.0 \times 10^{-5} \mathrm{M}$, basic
C. $2.0 \times 10^{-10} \mathrm{M}$, acidic
D. $2.0 \times 10^{-10} \mathrm{M}$, basic
E. $2.0 \times 10^{-11} \mathrm{M}$, acidic
2. Select the conjugate acid for HPO_{4}^{2-}
A. $\mathrm{H}_{3} \mathrm{PO}_{4}$
B. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
C. H^{+}
D. PO_{4}^{3-}
E. OH^{-}
3. Select the solution with the lowest $\mathbf{p H}$.
A. $0.10 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$
B. $0.10 \mathrm{M} \mathrm{HNO}_{2}$
C. $0.010 \mathrm{M} \mathrm{HClO}_{4}$
D. 0.10 M HCl
E. 0.10 M NaOH
4. According to the Bronsted-Lowry theory, a base is
A. an electron pair donor
B. an electron pair acceptor
C. a proton donor
D. a proton acceptor
E. a hydroxide ion donor
5. Consider the K_{a} values for the following acids:

$\mathrm{NH}_{4}{ }^{+}$	$\mathrm{K}_{\mathrm{a}}=5.6 \times 10^{-10}$
$\mathrm{HC}_{3} \mathrm{H}_{3} \mathrm{O}_{2}$	$\mathrm{~K}_{\mathrm{a}}=5.5 \times 10^{-5}$
$\mathrm{HCO}_{2} \mathrm{H}$	$\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-4}$
$\mathrm{HC}_{6} \mathrm{H}_{5} \mathrm{O}$	$\mathrm{K}_{\mathrm{a}}=1.6 \times 10^{-10}$
HNO_{2}	$\mathrm{~K}_{\mathrm{a}}=4.5 \times 10^{-4}$

Which of the following conjugate bases is the weakest base?
A. NH_{3}
B. $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$
C. HCO_{2}^{-}
D. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}$
E. $\mathrm{NO}_{2}{ }^{-}$
6. When comparing two different 0.10 M acid solutions, which statement is True?
A. The stronger acid has a lower percent ionization.
B. The weaker acid has a lower pK_{a} value.
C. The weaker acid has a lower pH reading.
D. The stronger acid is a better proton donor.
E. The weaker acid has a larger K_{a} value.
7. What change will be caused by the addition of a small amount of $\mathrm{HI}(a q)$ to a buffer solution containing $\mathrm{LiHCO}_{2(a q)}$ and $\mathrm{HCO}_{2} \mathrm{H}(a q)$?
A. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$will significantly increase
B. $\left[\mathrm{OH}^{-}\right]$will significantly increase
C. $\left[\mathrm{HCO}_{2} \mathrm{H}\right]$ will increase and $[\mathrm{HCOO}]$ will decrease
D. $\left[\mathrm{HCO}_{2} \mathrm{H}\right]$ will decrease and $\left[\mathrm{HCOO}^{-}\right]$will increase
E. $\left[\mathrm{HCO}_{2} \mathrm{H}\right]$ and $\left[\mathrm{HCOO}^{-}\right]$will both increase
8. Which of the following combinations could produce an effective buffer solution?
A. $\mathrm{KClO}_{4}, \mathrm{HClO}_{4}$
B. $\mathrm{HBrO}, \mathrm{KBrO}$
C. $\mathrm{HI}, \mathrm{NaOH}$
D. $\mathrm{NaOH}, \mathrm{NaCl}$
E. $\mathrm{KBr}, \mathrm{HBr}$
9. When $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{3(a q)}$ is titrated by a solution of $\mathrm{RbOH}(a q)$, the pH at the equivalence point is
\qquad because a \qquad salt has formed.
A. 7, neutral
B. $\mathrm{pH}<7$, acidic
C. $\mathrm{pH}<7$, basic
D. $\mathrm{pH}>7$, acidic
E. $\mathrm{pH}>7$, basic
10. What occurs when $\mathrm{NH}_{4} \mathrm{NO}_{3(a q)}$ is added to an $\mathrm{NH}_{3}(\mathrm{aq})$ solution?
A. pH decreases and $\left[\mathrm{OH}^{-}\right]$decreases
B. pH decreases and $\left[\mathrm{OH}^{-}\right]$increases
C. pH increases and $\left[\mathrm{OH}^{-}\right]$decreases
D. pH increases and $\left[\mathrm{OH}^{-}\right]$increases
E. the pH and $\left[\mathrm{OH}^{-}\right]$do not change
11. Which plot shows the titration curve expected when $\mathrm{LiOH}_{(a q)}$ is titrated by $\mathrm{HClO}_{4(a q)}$?
A.

B.

Part Two. Short Answer.

1. (6 pts) Predict whether each of the following salt solutions is acidic, basic or neutral.
A. $\mathrm{Li}_{2} \mathrm{CO}_{3}$
B. $\mathrm{NH}_{4} \mathrm{ClO}_{4}$
C. $\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$

Part Three. Problems. Please SHOW YOUR WORK for full credit. Use the correct number of significant figures for your answers and circle your final answer for each problem. (61 pts)

1. Ethylamine, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$, acts as a weak base in its reaction with $\mathrm{H}_{2} \mathrm{O}$.
a) Write the hydrolysis reaction that occurs for ethylamine $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}\right)$. (4 pts)
b) A 0.015 M ethylamine solution has a pH of 11.42. Calculate the K_{b} for ethylamine. (9 pts)
c) Calculate the \% ionization for this 0.015 M ethylamine solution. (3 pts)
2. Calculate the $\mathrm{pH}, \mathrm{pOH},\left[\mathrm{OH}^{-}\right]$and $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$for a $2.75 \times 10^{-2} \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}(a q)$ solution. (8 pts)
3. You have 200.0 mL of a buffer solution containing $0.175 \mathrm{M} \mathrm{HCO}_{2} \mathrm{H}$ and $0.225 \mathrm{M} \mathrm{NaHCO}_{2}$. What is the pH after 25.0 mL of 0.300 M KOH is added to this buffer solution? For $\mathrm{HCO}_{2} \mathrm{H}, \mathrm{K} \mathrm{a}=1.8 \times 10^{-4}$. (13 pts)
4. A solution of perchloric acid, $\mathrm{HClO}_{4}(\mathrm{aq})$, is being titrated with $\mathrm{LiOH}(\mathrm{aq})$. Calculate the pH after 15.0 mL of $0.200 \mathrm{M} \mathrm{LiOH}(\mathrm{aq})$ is added to 30.0 mL of $0.150 \mathrm{M} \mathrm{HClO} 4(\mathrm{aq})$. (10 pts)
5. A sample of benzoic acid, $\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$, is being titrated with KOH solution. What is the pH after 20.0 mL of 0.250 M KOH has been added to 25.0 mL of $0.200 \mathrm{M} \mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$? For $\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}, \mathrm{~K}_{\mathrm{a}}=6.4 \times 10^{-5} . \quad(14 \mathrm{pt})$

	pts earned	pts possible
Multiple Choice		33
Page 2		22
Page 3		21
Page 4		24
Total Pts		100

