CHM 152 Exam 2 Key Diebolt Fall 2017
Part One: Multiple choice. (33 pts: 3 pts each)

1. The pH of Budweiser beer is 4.30 . The $\left[\mathrm{OH}^{-}\right]$is \qquad and the solution would be \qquad .
A. $5.0 \times 10^{-5} \mathrm{M}$, acidic
B. $5.0 \times 10^{-5} \mathrm{M}$, basic
C. $2.0 \times 10^{-10} \mathrm{M}$, acidic
D. $2.0 \times 10^{-10} \mathrm{M}$, basic
E. $2.0 \times 10^{-11} \mathrm{M}$, acidic
$\mathrm{pOH}=14-4.30=9.70$
$\left[\mathrm{OH}^{-}\right]=10^{-9.70}=2.0 \times 10^{-10} \mathrm{M}, \mathrm{pH}<7$ so the beer is acidic
2. Select the conjugate acid for HPO_{4}^{2-}
A. $\mathrm{H}_{3} \mathrm{PO}_{4}$
B. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}=$C.A. $\left(1 \mathrm{more}^{+}\right)$
C. H^{+}
D. PO_{4}^{3-}
E. OH^{-}
3. Select the solution with the lowest pH.
A. $0.10 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$
SB
B. $0.10 \mathrm{M} \mathrm{HNO}_{\mathrm{WA}}$
C. $0.010 \mathrm{M} \mathrm{HClO}_{4}$
D. 0.10 M HCl E. 0.10 M NaOH
SA w/ highest []
SB
4. According to the Bronsted-Lowry theory, a base is
A. an electron pair donor = Lewis base
B. an electron pair acceptor = Lewis acid
C. a proton donor $=B L$ acid
D. a proton acceptor $=$ BL base
E. a hydroxide ion donor = Arrhenius base
5. Consider the K_{a} values for the following acids:
$\mathrm{NH}_{4}{ }^{+} \quad \mathrm{K}_{\mathrm{a}}=5.6 \times 10^{-10}$
$\mathrm{HC}_{3} \mathrm{H}_{3} \mathrm{O}_{2} \quad \mathrm{~K}_{\mathrm{a}}=5.5 \times 10^{-5}$
$\mathrm{HCO}_{2} \mathrm{H} \quad \mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-4}$
$\mathrm{HC}_{6} \mathrm{H}_{5} \mathrm{O} \quad \mathrm{K}_{\mathrm{a}}=1.6 \times 10^{-10}$ smallest $\mathrm{K}_{\mathrm{a}}=$ strongest acid; thus, strongest conj base
$\mathrm{HNO}_{2} \quad \mathrm{~K}_{\mathrm{a}}=4.5 \times 10^{-4}$ largest $\mathrm{K}_{\mathrm{a}}=$ strongest acid; thus, weakest conj base
Which of the following conjugate bases is the weakest base?
A. NH_{3}
B. $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$
C. HCO_{2}^{-}
D. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}$
E. NO_{2}^{-}
6. When comparing two different 0.10 M acid solutions, which statement is True?
A. The stronger acid has a lower percent ionization. F, as strength \uparrow, \% ionization \uparrow
B. The weaker acid has a lower pK_{a} value. $\mathrm{F}, \mathrm{pK} \mathrm{a}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}} ; \mathrm{pK}_{\mathrm{a}} \uparrow$ as $\mathrm{K}_{\mathrm{a}} \downarrow$ for weaker acid
C. The weaker acid has a lower pH reading. F , it has lower $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right.$]; thus, higher pH
D. The stronger acid is a better proton donor. T, as strength \uparrow, acid loses H^{+}more readily
E. The weaker acid has a larger K_{a} value. F , it has less $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$so smaller Ka_{a}
7. What change will be caused by the addition of a small amount of $\mathrm{HI}(a q)$ to a buffer solution containing $\mathrm{LiHCO}_{2(a q)}$ and $\mathrm{HCO}_{2} \mathrm{H}_{(a q)}$?

Add $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{HI}=\mathrm{SA})$; neut: $\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HCO}_{2}^{-} \downarrow \rightarrow \mathrm{HCO}_{2} \mathrm{H} \uparrow+\mathrm{H}_{2} \mathrm{O}$

A. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$will significantly increase
B. $[\mathrm{OH}]$ will significantly increase
C. $\left[\mathrm{HCO}_{2} \mathrm{H}\right]$ will increase and $[\mathrm{HCOO}]$ will decrease $W A=\mathrm{HCO}_{2} \mathrm{H} \uparrow$, WB $=\mathrm{HCOO} \downarrow$
D. $\left[\mathrm{HCO}_{2} \mathrm{H}\right]$ will decrease and $[\mathrm{HCOO}]$ will increase
E. $\left[\mathrm{HCO}_{2} \mathrm{H}\right]$ and $[\mathrm{HCOO}]$ will both increase
8. Which of the following combinations could produce an effective buffer solution?
A. $\mathrm{KClO}_{4}, \mathrm{HClO}_{4}$
B. HBrO, KBrO
WA, CB
C. $\mathrm{HI}, \mathrm{NaOH}$
D. $\mathrm{NaOH}, \mathrm{NaCl}$
E. $\mathrm{KBr}, \mathrm{HBr}$
NS, SA
SA SB
SB, NS
NS, SA

Buffers contain: a) weak acid/ salt with conj base; or 2) weak base/salt with conj acid
9. When $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{3}(a q)(\mathrm{WA})$ is titrated by $\mathrm{RbOH}_{(a q)}(\mathrm{SB})$, the pH at the equivalence point is ≥ 7 because a basic salt has formed. WA titrated by SB forms basic salt ($\mathrm{RbC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$!
A. 7, neutral
B. $\mathrm{pH}<7$, acidic
C. $\mathrm{pH}<7$, basic
D. $\mathrm{pH}>7$, acidic
E. $\mathrm{pH}>7$, basic
10. What occurs when $\mathrm{NH}_{4} \mathrm{NO}_{3}($ aq $)$ is added to an $\mathrm{NH}_{3}(a q)$ solution? Added Conj. Acid from acidic salt so $\mathrm{pH} \downarrow$; thus, $[\mathrm{OH}] \downarrow$ (adding common ion, $\mathrm{NH}_{4}{ }^{+}: \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{NH}_{4}+\boldsymbol{O H}$)
A. pH decreases and $[\mathrm{OH} \cdot]$ decreases
B. pH decreases and $\left[\mathrm{OH}^{-}\right]$increases
C. pH increases and $\left[\mathrm{OH}^{-}\right]$decreases
D. pH increases and $[\mathrm{OH}]$ increases
E. the pH and $\left[\mathrm{OH}^{-}\right]$do not change
11. Which plot shows the titration curve expected when $\mathbf{L i O H}(\mathrm{SB})$ is titrated by $\mathrm{HClO}_{4(a q)}(\mathrm{SA})$?
A.

B.
pH

C. SB

ml

ml

Part Two. Short Answer.

1. (6 pts) Predict whether each of the following salt solutions is acidic, basic or neutral.
A. $\mathrm{Li}_{2} \mathrm{CO}_{3}$
NB = basic salt
B. $\mathrm{NH}_{4} \mathrm{ClO}_{4}$
A $N=$ acidic salt
C. $\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$
N N = neutral salt

Part Three. Problems. Please SHOW YOUR WORK for full credit. Use the correct number of significant figures for your answers and circle your final answer for each problem. (61 pts)

1. Ethylamine, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$, acts as a weak base in its reaction with $\mathrm{H}_{2} \mathrm{O}$.
a) Write the hydrolysis reaction that occurs for ethylamine $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}\right)$. (4 pts)

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O}(l) \leftrightarrows \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}+\mathrm{OH}^{-}
$$

b) A 0.015 M ethylamine solution has a pH of 11.42. Calculate the K_{b} for ethylamine. (9 pts)

$\mathbf{C}_{2} \mathbf{H}_{5} \mathbf{N H}_{2}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathbf{C}_{2} \mathbf{H}_{5} \mathbf{N H}_{3}{ }^{+}+\mathbf{O H}^{-}$			
0.015		0	0
-x		+x	+x
$0.015-\mathrm{x}$		x	x

$$
\begin{array}{lll}
\mathrm{pH}=11.42 & \mathrm{pOH}=14-11.42=2.58 \\
{\left[\mathrm{OH}^{-}\right]=10^{-\mathrm{pOH}}} & {\left[\mathrm{OH}^{-}\right]=10^{-2.58}=2.63 \times 10^{-3} \mathrm{M}} & \mathrm{x}=\left[\mathrm{OH}^{-}\right]=\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}\right]=2.63 \times 10^{-3} \mathrm{M}
\end{array}
$$

$\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}\right]=0.015-2.63 \times 10^{-3}=0.0124 \mathrm{M}$ Don't drop \times term, we know \times from the pH !

$$
\mathbf{K}_{\mathbf{b}}=\frac{\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}\right]} \quad \mathrm{K}_{\mathrm{b}}=\frac{x^{2}}{0.015-x}=\frac{\left(2.63 \times 10^{-3}\right)^{2}}{0.0124} \quad \underline{\mathbf{K}_{b}=5.6 \times 10^{-4}}
$$

c) Calculate the \% ionization for this 0.015 M ethylamine solution. (3 pts)
\%ionization $=\frac{\mathrm{x}}{\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}\right]} \times 100 \%=\frac{2.63 \times 10^{-3}}{[0.015]} \times 100 \%=17.5 \%=18 \%$ ionized
2. Calculate the $\mathrm{pH}, \mathrm{pOH},\left[\mathrm{OH}^{-}\right]$and $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$for a $2.75 \times 10^{-2} \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}(a q)$ solution. (8 pts) $\mathrm{Ba}(\mathrm{OH})_{2}$ is $\mathrm{SB} \quad$ Dissociation reaction: $\mathrm{Ba}(\mathrm{OH})_{2} \rightarrow \mathrm{Ba}^{2+}+2 \mathrm{OH}^{-}$ $\left[\mathrm{OH}^{-}\right]=\left(\frac{\left.2.75 \times 10^{-2} \mathrm{~mol} \mathrm{Ba(OH}\right)_{2}}{\mathrm{~L}}\right)\left(\frac{2 \mathrm{~mol} \mathrm{OH}^{-}}{1 \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2}}\right)=\underline{5.50 \times 10^{-2} \mathrm{M} \mathrm{OH}^{-}(3 \mathrm{sf})}$
$\mathrm{pOH}=-\log 5.50 \times 10^{-2}=1.2596 \mathrm{pOH}=1.260(3 \mathrm{dp}) \mathrm{pH}=14-1.260 \mathrm{pH}=12.740(3 \mathrm{dp})$ $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}=10^{-12.740} \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.82 \times 10^{-13} \mathrm{M}(3 \mathrm{sf}) \quad$ © pH is high for a SB
3. You have 200.0 mL of a buffer solution containing $0.175 \mathrm{M} \mathrm{HCO}_{2} \mathrm{H}$ and 0.225 M NaHCO . What is the pH after 25.0 mL of 0.300 M KOH is added to this buffer solution?
For $\mathrm{HCO}_{2} \mathrm{H}, \mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-4}$. (13 pts)
using moles (or mmoles) and HH eq:
moles $\mathrm{OH}^{-}=0.025 \mathrm{~L} \times 0.300 \mathrm{M}=0.0075{\text { moles } \mathrm{OH}^{-}}^{(}=7.50 \mathrm{mmoles}$)
moles $\mathrm{HCO}_{2} \mathrm{H}=0.200 \mathrm{~L} \times 0.175 \mathrm{M}=0.0350$ moles HA ($=35.0$ mmoles)
moles $\mathrm{HCO}_{2}{ }^{-}=0.200 \mathrm{~L} \times 0.225 \mathrm{M}=0.0450$ moles A^{-}($=45.0$ mmoles)
OH^{-}will react with the weak acid, $\mathrm{HNO}_{2}: \quad\left[\mathrm{HNO}_{2}\right] \downarrow \quad\left[\mathrm{NO}_{2}^{-}\right] \uparrow$

AB neut. Rxn: $\mathrm{OH}^{-}+\mathrm{HCO}_{2} \mathrm{H} \rightarrow \mathrm{HCO}_{2}^{-}$	$+\mathrm{H}_{2} \mathrm{O}$			
Initial	0.0075	0.0350	0.0450	
Change	-0.0075	-0.0075	+0.0075	
final	0	0.0275	0.0525	

$\mathrm{mol} \mathrm{HA}(W A)=0.0275 \mathrm{~mol}(=27.5 \mathrm{mmol})$ moles $\mathrm{A}^{-}(\mathrm{WB})=0.0525 \mathrm{~mol}(=52.5 \mathrm{mmol})$
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log [\mathrm{A}] /[\mathrm{HA}] \quad \mathrm{pH}=-\log 1.8 \times 10^{-4}+\log (0.0525 / 0.0275)$

$$
\mathrm{pH}=3.745+0.281 \quad \mathrm{pH}=4.03
$$

- $\mathrm{pH}=4.02$ if rounded pH 's to 2 sf before adding

Note: Can also solve calculating diluted M's, finding final M's after neutralization, and plugging the final concentrations in to Ka to find $\mathrm{x}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$.
4. A solution of perchloric acid, $\mathrm{HClO}_{4}(\mathrm{aq})$, is being titrated with $\mathrm{LiOH}(\mathrm{aq})$. Calculate the pH after 15.0 mL of $0.200 \mathrm{M} \mathrm{LiOH}(\mathrm{aq})$ is added to 30.0 mL of $0.150 \mathrm{M} \mathrm{HClO}_{4}(\mathrm{aq})$. (10 pts)

SA-SB neutralization: $\mathrm{HClO}_{4}+\mathrm{LiOH} \rightarrow \mathrm{LiClO}_{4}+\mathrm{H}_{2} \mathrm{O}$
Net rxn: $\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O} \quad\left(\right.$ or $\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$)
moles acid $=30.0 \mathrm{~mL} \times 0.150 \mathrm{M} \mathrm{HClO}_{4}=4.50 \mathrm{mmol} \mathrm{H}_{3} \mathrm{O}^{+}$
moles base $=15.0 \mathrm{~mL} \times 0.200 \mathrm{M} \mathrm{LiOH}=3.00 \mathrm{mmol} \mathrm{OH}^{-}=\mathrm{LR}$
moles acid > moles base
moles $\mathrm{H}_{3} \mathrm{O}^{+}$remaining $=4.50 \mathrm{mmol}-3.00 \mathrm{mmol}=1.50 \mathrm{mmol} \mathrm{H}_{3} \mathrm{O}^{+}$
*Change (ICF table) also could have been used to find which is in excess
$\mathrm{M} \mathrm{H}_{3} \mathrm{O}^{+}=\frac{1.50 \mathrm{mmoles}}{45.0 \mathrm{~mL}}=0.0333 \mathrm{M} \mathrm{H}_{3} \mathrm{O}^{+}$
$\mathrm{pH}=-\log 0.0333=1.478 \quad$ () pH is low since there is excess SA !
4. A sample of benzoic acid, $\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$, is being titrated with KOH solution. What is the pH after 20.0 mL of 0.250 M KOH has been added to 25.0 mL of $0.200 \mathrm{M} \mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$?

For $\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}, \mathrm{~K}_{\mathrm{a}}=6.4 \times 10^{-5}$. (14 pt)
moles $\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}=25.0 \mathrm{ml}\left(\frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}\right)\left(\frac{0.200 \text { moles } \mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}}{\mathrm{~L}}\right)=5.00 \times 10^{-3}$ moles $\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$
moles $\mathrm{KOH}=20.0 \mathrm{ml}\left(\frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}\right)\left(\frac{0.250 \text { moles } \mathrm{KOH}}{\mathrm{L}}\right)=5.00 \times 10^{-3}$ moles OH^{-}(Same \# moles!)

Neutralization rxn	$\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}+\mathrm{OH}^{-} \rightarrow \mathbf{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}{ }^{-}+\mathrm{H}_{2} \mathrm{O}$			
Initial moles	0.00500	0.00500	0	
Change	-0.00500	-0.00500	+0.00500	
Final moles	0	0	0.00500	

At equivalence point, so only $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}^{-}$, a weak base, remains:
*This is a weak base problem so we need to convert moles to M before we plug it into K_{b}. V terms don't cancel since $K_{b}=x^{2} /[B]$!

Divide moles by total $\mathrm{V}:\left[\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}{ }^{-}\right]=\frac{5.00 \times 10^{-3} \text { moles }}{0.0450 \mathrm{~L}}=0.111 \mathrm{M}$

WB hydrolysis	$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}-\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}+\mathrm{OH}^{-}$			
I	0.111		0	0
C	-x		x	x
E	$0.111-\mathrm{x}$		x	x

K_{b} for $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}^{-}=\frac{1 \times 10^{-14}}{6.4 \times 10^{-5}}=1.56 \times 10^{-10} \quad \mathrm{~K}_{\mathrm{b}}=\frac{\left[\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}^{-}\right]}$
$1.56 \times 10^{-10}=\frac{x^{2}}{0.111} \quad \mathrm{x}=\left[\mathrm{OH}^{-}\right]=\sqrt{0.111\left(1.56 \times 10^{-10}\right)}=4.16 \times 10^{-6}$
$\mathrm{pOH}=-\log 4.16 \times 10^{-6}=5.38$

$$
\mathrm{pH}=14-5.38
$$

$\mathrm{pH}=8.62$
(:) pH > 7 at the equivalence pt for a WA-SB titration

