Name

TABLE I: Reduction Potentials

Part One: Multiple choice. Make sure that you <u>bubble the 10 digit phone #</u> for your ID# on the <u>answer side</u> and <u>write name</u> on the <u>information side</u>. (42 points; 3 points each)

1. Which substance is serving as the oxidizing agent in the following reaction?

 $\begin{array}{rcl} 6 Fe^{2+}(aq) + & Cr_2O_7^{2-}(aq) + 14H^{+}(aq) \rightarrow & 6Fe^{3+}(aq) + 2Cr^{3+}(aq) + 7H_2O(l) \\ A. \ Fe^{2+}(aq) & B. \ Cr_2O_7^{2-}(aq) & C. \ H^{+}(aq) & D. \ Fe^{3+}(aq) & E. \ Cr^{3+}(aq) \end{array}$

2. Which of the following statements is **not** true for the following galvanic cell

 $Cr(s) | Cr^{3+}(aq) | | Ag^{+}(aq) | Ag(s)?$

- A. electrons move through a wire towards the silver electrode during discharge.
- B. the mass of the silver electrode increases during discharge.
- C. anions from the salt bridge move into the compartment containing silver.
- D. the concentration of Cr^{3+} ions increases during discharge.
- E. chromium is oxidized as the reaction proceeds in this voltaic cell.
- 3. Which of the following will react spontaneously? (Refer to Table I above.)

A. $Cu^+(aq)$ with $Hg(s)$	B. $Cr^{3+}(aq)$ with $Cd(s)$	C. $Pb(s)$ with $Cd(s)$
D. Cd(s) with Cu ⁺ (aq)	E. $Cd^{2+}(aq)$ with $Pb(s)$	

4. Which substance is the strongest reducing agent? (Refer to Table I above.)

A. Cr(s) B. Pb(s) C. $Cr^{3+}(aq)$ D. $Hg^{2+}(aq)$ E. Hg(s)

- 5. Which of the following is TRUE regarding a galvanic cell?
 - A. Cations in the salt bridge move into the anode compartment.
 - B. The overall cell emf is negative.
 - C. Oxidation occurs at the cathode.
 - D. Electrons travel from the cathode to the anode via a connecting wire.
 - E. The anode electrode is losing mass as the cell runs.
- 6. Which of the following is true when one mole of $H_2O(l)$ changes to $H_2O(s)$?

Α.	ΔS	is + and ΔH is +	B. ΔS is + and ΔH is –
C.	٨S	is – and ΛH is +	D. Λ S is – and Λ H is –

7. Which of the following has the largest absolute entropy at 25 °C?

A. $H_2O(l)$ B. Pt(s) C. $C_4H_{10}(g)$ D. Ar(g) E. $FePO_4(s)$

- 8. In which of the following reactions is ΔS° negative?
 - 1. $C_4H_{10}(s) \rightarrow C_4H_{10}(g)$
 - 2. $CS_{2(g)} + 4H_{2(g)} \rightarrow CH_{4(g)} + 2H_{2}S_{(g)}$
 - 3. $NH_3(g) + H_2S(g) \rightarrow NH_4HS(s)$
 - 1 only B. 2 only C. 3 only D. 1 and 2 only E. 2 and 3 only
- 9. Which of the following does not have a standard free energy of formation of zero?
 - A. Ne(g) B. I₂(l) C. N₂(g) D. Au(s) E. $\Delta G_{f}^{\circ} = 0$ for all of these

10. Some standard entropies (S°) are given at 25 °C:

$N_2O_5(g)$ 355.2 $\frac{J}{K \cdot mol}$	NO ₂ (g) 239.9 $\frac{J}{K \cdot mol}$	O ₂ (g) 204.8 $\frac{J}{K \cdot mol}$
---	---	--

Calculate ΔS° in $\frac{J}{\kappa}$ for the reaction: $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$

A. 89.5
$$\frac{J}{\kappa}$$
 B. -89.5 $\frac{J}{\kappa}$ C. -454.0 $\frac{J}{\kappa}$ D. +454.0 $\frac{J}{\kappa}$ E. 227.0 $\frac{J}{\kappa}$

- 11. $\Delta H^{\circ} = -90.84$ kJ for the following reaction: $2 \text{ Hg}(l) + O_2(g) \rightarrow 2 \text{HgO}(s)$. This reaction is most likely to be
 - A. spontaneous at all temperatures
 - B. spontaneous at high temperatures but nonspontaneous at low temperatures
 - C. spontaneous at low temperatures but nonspontaneous at high temperatures
 - D. nonspontaneous at all temperatures
- 12. Calculate ΔG° for the following reaction at 25 °C:

 $I_{2(g)} + CI_{2(g)} \rightarrow 2ICI_{(g)}; \Delta H^{\circ} = -26.9 \text{ kJ}; \Delta S^{\circ} = 11.3 \text{ J/K}$ A. -30.3 kJ B. -23.5 kJ C. -27.2 kJ D. 18.4 kJ E. -3394 kJ

- 13. $\Delta G^{\circ} = -36.2 \text{ kJ}$ for a given reaction at 25 °C. Calculate the equilibrium constant, K, at 25 °C.

 A. 0.985
 B. 1.01
 C. 4.51×10^{-7} D. 2.22×10^{6} E. 4.08×10^{14}
- 14. The free energy vs. reaction progress diagram below is characteristic of a reaction with:

Part Two. Short Answer and Numerical Problems. For calculation questions, you must SHOW YOUR WORK, including UNITS, to receive full credit. (58 points)

1. Calculate the molar solubility of Fe(OH)₃ in pure water. For Fe(OH)₃, $K_{sp} = 1.1 \times 10^{-36}$. (8 pts)

2. If you mix 200.0 mL of 2.40 x 10^{-3} M Na₂CO₃(*aq*) with 400.0 mL of 1.50 x 10^{-3} M AgNO₃(*aq*), does Ag₂CO₃ precipitate? Show your work mathematically by calculating the Q value. For Ag₂CO₃, K_{sp} = 8.5 × 10^{-12} . (10 pts)

 Answer the following questions about this galvanic cell: Cr(s) | Cr³⁺(aq) || Cd²⁺(aq) | Cd(s). Refer to Table I on page 1 for the standard reduction potentials. (20 pts)

Α.	What is the overall balanced cell reaction? (3 pts)	
----	---	--

- B. What is the standard cell potential, $\mathcal{E}_{cell}^{\circ}$? (2 pts) _____
- C. What is the oxidation 1/2 reaction? (2 pts)
- D. Which electrode is gaining mass? (2 pts) _____
- E. Calculate ΔG° for this cell. (5 pts)
- F. Calculate the equilibrium constant, K, for this cell. (6 pts)

4. A certain galvanic cell is constructed based on the following half reactions: (20 pts)

 $Cu^+(aq) + e^- \rightarrow Cu(s)$ $\mathcal{E}^{o}_{red} = 0.52 \text{ V}$ $Sn^{4+}(aq) + 2e^- \rightarrow Sn^{2+}(aq)$ $\mathcal{E}^{o}_{red} = 0.15 \text{ V}$

A. Assign the anode and cathode half reactions for the cell. (Make sure to write the reactions in the appropriate direction!) (4 pts)

	cathode half reaction:
	anode half reaction:
В.	Write an overall balanced reaction for the cell and determine the standard cell potential, ${\cal E}_{\it cell}^{`}$. (6 pts)
	Overall reaction:
	$\mathcal{E}_{cell}^{\circ}$ =
C.	(1 pt) atom oxidized: (1 pt) atom reduced:
D. [Sı	Calculate the cell potential, \mathcal{E}_{cell} , at 25 °C when [Cu ⁺] = 1.75 M, [Sn ⁴⁺] = 0.45 M and n ²⁺] = 1.15 M. (8 pts)

	pts earned	pts possible
multiple choice		42
Part two		58
Total Pts		100