CHM 152 HOUR EXAM 3
Spring 2013 Diebolt

Name \qquad
Sping 2013 Diebolt

Part One: Multiple choice. Make sure that you bubble the 10 digit phone \# for your ID\# on the answer side and write name on the information side. (42 points; 3 points each)

1. Which substance is serving as the oxidizing agent in the following reaction?
$6 \mathrm{Fe}^{2+}(a q)+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q)+14 \mathrm{H}^{+}(a q) \rightarrow 6 \mathrm{Fe}^{3+}(a q)+2 \mathrm{Cr}^{3+}(a q)+7 \mathrm{H}_{2} \mathrm{O}(I)$
A. $\mathrm{Fe}^{2+}(a q)$
B. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q)$
C. $\mathrm{H}^{+}(a q)$
D. $\mathrm{Fe}^{3+}(a q)$
E. $\mathrm{Cr}^{3+}(a q)$
2. Which of the following statements is not true for the following galvanic cell $\mathrm{Cr}(\mathrm{s})\left|\mathrm{Cr}^{3+}(\mathrm{aq}) \| \mathrm{Ag}^{+}(\mathrm{aq})\right| \mathrm{Ag}(\mathrm{s})$?
A. electrons move through a wire towards the silver electrode during discharge.
B. the mass of the silver electrode increases during discharge.
C. anions from the salt bridge move into the compartment containing silver.
D. the concentration of Cr^{3+} ions increases during discharge.
E. chromium is oxidized as the reaction proceeds in this voltaic cell.
3. Which of the following will react spontaneously? (Refer to Table I above.)
A. $\mathrm{Cu}^{+}(a q)$ with $\mathrm{Hg}(s)$
B. $\mathrm{Cr}^{3+}(a q)$ with $\mathrm{Cd}(s)$
C. $\mathrm{Pb}(s)$ with $\mathrm{Cd}(s)$
D. $\mathrm{Cd}(s)$ with $\mathrm{Cu}^{+}(a q)$
E. $\mathrm{Cd}^{2+}(a q)$ with $\mathrm{Pb}(s)$
4. Which substance is the strongest reducing agent? (Refer to Table I above.)
A. $\mathrm{Cr}(s)$
B. $\mathrm{Pb}(s)$
C. $\mathrm{Cr}^{3+}(a q)$
D. $\mathrm{Hg}^{2+}(a q)$
E. $\mathrm{Hg}(s)$
5. Which of the following is TRUE regarding a galvanic cell?
A. Cations in the salt bridge move into the anode compartment.
B. The overall cell emf is negative.
C. Oxidation occurs at the cathode.
D. Electrons travel from the cathode to the anode via a connecting wire.
E. The anode electrode is losing mass as the cell runs.
6. Which of the following is true when one mole of $\mathrm{H}_{2} \mathrm{O}(l)$ changes to $\mathrm{H}_{2} \mathrm{O}(s)$?
A. $\Delta \mathrm{S}$ is + and $\Delta \mathrm{H}$ is +
B. $\Delta \mathrm{S}$ is + and $\Delta \mathrm{H}$ is -
C. $\Delta \mathrm{S}$ is - and $\Delta \mathrm{H}$ is +
D. $\Delta \mathrm{S}$ is - and $\Delta \mathrm{H}$ is -
7. Which of the following has the largest absolute entropy at $25^{\circ} \mathrm{C}$?
A. $\mathrm{H}_{2} \mathrm{O}(l)$
B. $\mathrm{Pt}(s)$
C. $\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})$
D. $\operatorname{Ar}(g)$
E. $\mathrm{FePO}_{4(s)}$
8. In which of the following reactions is $\Delta \mathrm{S}^{\circ}$ negative?
9. $\mathrm{C}_{4} \mathrm{H}_{10(s)} \rightarrow \mathrm{C}_{4} \mathrm{H}_{10(g)}$
10. $\mathrm{CS}_{2(g)}+4 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4(g)}+2 \mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})}$
11. $\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \rightarrow \mathrm{NH}_{4} \mathrm{HS}(\mathrm{s})$
1 only
B. 2 only
C. 3 only
D. 1 and 2 only
E. 2 and 3 only
12. Which of the following does not have a standard free energy of formation of zero?
A. $\mathrm{Ne}(g)$
B. $I_{2(l)}$
C. $\mathrm{N}_{2}(\mathrm{~g})$
D. $\mathrm{Au}(s)$
E. $\Delta \mathbf{G}_{f}^{\circ}=0$ for all of these
13. Some standard entropies $\left(\mathrm{S}^{\circ}\right)$ are given at $25^{\circ} \mathrm{C}$:

| $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})$ | $355.2 \frac{\mathrm{~J}}{\mathrm{~K} \cdot \mathrm{~mol}}$ | $\mathrm{NO}_{2}(\mathrm{~g})$ | $239.9 \frac{\mathrm{~J}}{\mathrm{~K} \cdot \mathrm{~mol}}$ |
| :--- | :--- | :--- | :--- | $\mathrm{O}_{2}(\mathrm{~g}) 204.8 \frac{\mathrm{~J}}{\mathrm{~K} \cdot \mathrm{~mol}}$

Calculate $\Delta \mathrm{S}^{\circ}$ in $\frac{J}{K}$ for the reaction: $2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
A. $89.5 \frac{\mathrm{~J}}{\mathrm{~K}}$
B. $-89.5 \frac{\mathrm{~J}}{\mathrm{~K}}$
C. $-454.0 \frac{\mathrm{~J}}{\mathrm{~K}}$
D. $+454.0 \frac{\mathrm{~J}}{\mathrm{~K}}$
E. $227.0 \frac{\mathrm{~J}}{\mathrm{~K}}$
11. $\Delta \mathrm{H}^{\circ}=-90.84 \mathrm{~kJ}$ for the following reaction: $2 \mathrm{Hg}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HgO}(\mathrm{s})$. This reaction is most likely to be
A. spontaneous at all temperatures
B. spontaneous at high temperatures but nonspontaneous at low temperatures
C. spontaneous at low temperatures but nonspontaneous at high temperatures
D. nonspontaneous at all temperatures
12. Calculate $\Delta \mathrm{G}^{\circ}$ for the following reaction at $25^{\circ} \mathrm{C}$:
$\mathrm{I}_{2(g)}+\mathrm{Cl}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{ICl}(\mathrm{g}) ; \Delta \mathrm{H}^{\circ}=-26.9 \mathrm{~kJ} ; \Delta \mathrm{S}^{\circ}=11.3 \mathrm{~J} / \mathrm{K}$
A. -30.3 kJ
B. -23.5 kJ
C. -27.2 kJ
D. 18.4 kJ
E. -3394 kJ
13. $\Delta \mathrm{G}^{\circ}=-36.2 \mathrm{~kJ}$ for a given reaction at $25^{\circ} \mathrm{C}$. Calculate the equilibrium constant, K , at $25^{\circ} \mathrm{C}$.
A. 0.985
B. 1.01
C. 4.51×10^{-7}
D. 2.22×10^{6}
E. 4.08×10^{14}
14. The free energy vs. reaction progress diagram below is characteristic of a reaction with:

A. $\Delta \mathrm{G}^{\circ}>0, \varepsilon^{\circ}<0, \mathrm{~K}<1$
B. $\Delta \mathbf{G}^{\circ}>0, \varsigma^{\circ}<0, K>1$
C. $\Delta G^{\circ}=0, \varepsilon^{\circ}=0, K=1$
D. $\Delta G^{\circ}<0, \varepsilon^{\circ}>0, K<1$
E. $\Delta G^{\circ}<0, \varepsilon^{0}>0, K>1$

Part Two. Short Answer and Numerical Problems. For calculation questions, you must SHOW YOUR WORK, including UNITS, to receive full credit. (58 points)

1. Calculate the molar solubility of $\mathrm{Fe}(\mathrm{OH})_{3}$ in pure water. For $\mathrm{Fe}(\mathrm{OH})_{3}, \mathrm{~K}_{\mathrm{sp}}=1.1 \times 10^{-36}$. (8 pts)
2. If you mix 200.0 mL of $2.40 \times 10^{-3} \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3(a q)}$ with 400.0 mL of $1.50 \times 10^{-3} \mathrm{M} \mathrm{AgNO}_{3(a q)}$, does $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ precipitate? Show your work mathematically by calculating the Q value.
For $\mathrm{Ag}_{2} \mathrm{CO}_{3}, \mathrm{~K}_{\mathrm{sp}}=8.5 \times 10^{-12}$. (10 pts)
3. Answer the following questions about this galvanic cell: $\mathrm{Cr}(\mathrm{s})\left|\mathrm{Cr}^{3+}(\mathrm{aq}) \| \mathrm{Cd}^{2+}(\mathrm{aq})\right| \mathrm{Cd}(\mathrm{s})$. Refer to Table I on page 1 for the standard reduction potentials. (20 pts)
A. What is the overall balanced cell reaction? (3 pts) \qquad
B. What is the standard cell potential, $\mathcal{E}_{\text {cell }}^{\circ}$? (2 pts) \qquad
C. What is the oxidation $1 / 2$ reaction? (2 pts) \qquad
D. Which electrode is gaining mass? (2 pts) \qquad
E. Calculate $\Delta \mathrm{G}^{\circ}$ for this cell. (5 pts)
F. Calculate the equilibrium constant, K , for this cell. (6 pts)
4. A certain galvanic cell is constructed based on the following half reactions: (20 pts)

$$
\begin{array}{ll}
\mathrm{Cu}^{+}(a q)+\mathrm{e}^{-} \rightarrow \mathrm{Cu}(s) & \mathfrak{E}^{\circ} \text { red }=0.52 \mathrm{~V} \\
\mathrm{Sn}^{4+}(a q)+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}^{2+}(a q) & \mathfrak{E}^{\mathrm{o}} \mathrm{red}=0.15 \mathrm{~V}
\end{array}
$$

A. Assign the anode and cathode half reactions for the cell. (Make sure to write the reactions in the appropriate direction!) (4 pts)
cathode half reaction: \qquad
anode half reaction: \qquad
B. Write an overall balanced reaction for the cell and determine the standard cell potential, $\mathcal{E}_{\text {cell }}^{\circ} \cdot(6 \mathrm{pts})$

Overall reaction: \qquad
$\mathcal{E}_{\text {cell }}^{\circ}=$ \qquad
C. (1 pt) atom oxidized: \qquad (1 pt) atom reduced: \qquad
D. Calculate the cell potential, $\mathcal{E}_{\text {cell }}$, at $25^{\circ} \mathrm{C}$ when $\left[\mathrm{Cu}^{+}\right]=1.75 \mathrm{M},\left[\mathrm{Sn}^{4+}\right]=0.45 \mathrm{M}$ and $\left[\mathrm{Sn}^{2+}\right]=1.15 \mathrm{M}$. (8 pts)

	pts earned	pts possible
multiple choice		42
Part two		58
Total Pts		100

