TABLE I: Reduction Potentials			
Most - $®^{\circ}$ red $=$ hardest to reduce		Easiest to oxidize	
= worst ox agent	$\mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s})$	Best red agent	$\mathcal{E}^{\circ}{ }_{\text {red }}=-0.74 \mathrm{~V}$
	$\mathrm{Cd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cd}(\mathrm{s})$		$\mathcal{E}^{\circ}{ }^{\text {red }}=-0.40 \mathrm{~V}$
	$\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pb}(\mathrm{s})$		$\mathcal{E}^{\circ}{ }_{\text {red }}=-0.13 \mathrm{~V}$
	$\mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$		$\mathcal{E}^{\circ}{ }_{\text {red }}=0.52 \mathrm{~V}$
Most $+\mathscr{E}^{\circ}$ red $=$ easiest to reduce	$\mathrm{Hg}^{2+}(a q)+2 \mathrm{e}^{-} \rightarrow \mathrm{Hg}(s)$	Hardest to oxidize	$\mathcal{E}^{\circ}{ }^{\text {red }}=0.85 \mathrm{~V}$

Part One: Multiple choice. (42 points; 3 points each)
Which substance is serving as the oxidizing agent in the following reaction?
$6 \mathrm{Fe}^{2+}(a q)+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q)+14 \mathrm{H}^{+}(a q) \rightarrow 6 \mathrm{Fe}^{3+}(a q)+2 \mathrm{Cr}^{3+}(a q)+7 \mathrm{H}_{2} \mathrm{O}(I)$
+2 +6 -2 +1 +3 +3 +1 -2
$\mathrm{Fe}+2$ to +3 (more +) so Fe^{+2} is oxidized = red agent
$\mathrm{Cr}+6$ to +3 (more -) so Cr^{+6} is reduced; $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ is oxidizing agent
A. $\mathrm{Fe}^{2+}(a q)$
B. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q)$
C. $\mathrm{H}^{+}(a q)$
D. $\mathrm{Fe}^{3+}(a q)$
E. $\mathrm{Cr}^{3+}(a q)$

Which of the following statements is not true for the following galvanic cell?

$\mathrm{Cr}(\mathrm{s})+3 \mathrm{Ag}^{+}(a q) \rightarrow \mathrm{Cr}^{3+}(a q)+\mathrm{Ag}(s)$
$\mathrm{Cr}(\mathrm{s})$ is oxidized = anode, mass $\mathrm{Cr} \downarrow$, $\left[\mathrm{Cr}^{3+}\right] \uparrow$, anions move in, e- move away (lose e-)
Ag^{+}is reduced = cathode, mass $\mathrm{Ag} \uparrow,\left[\mathrm{Ag}^{+}\right] \downarrow$, cations move in, e-move toward (gain e-)
A. electrons move through a wire towards the silver electrode during discharge. T; e-'s move from anode to cathode
B. the mass of the silver electrode increases during discharge. T (fat red cat)
C. anions from the salt bridge move into the compartment containing silver. F; cations into cathode $=\mathrm{Ag}$ \& anions into anode compartment $=\mathrm{Cr}$
D. the concentration of Cr^{3+} ions increases during discharge. T ; products \uparrow
E. chromium is oxidized as the reaction proceeds in this voltaic cell.T; ox occurs at anode

Which of the following will react spontaneously? (Refer to Table I above.)
A. $\mathrm{Cu}^{+}(a q)$ with $\mathrm{Hg}(s)-\mathrm{V}$
B. $\mathrm{Cr}^{3+}(a q)$ with $\mathrm{Cd}(s)-\mathrm{V}$
C. $\mathrm{Pb}(s)$ with $\mathrm{Cd}(s) \mathrm{NR}$
D. $\mathrm{Cd}(s)$ with $\mathrm{Cu}^{+}(a q)+\mathrm{V}$
E. $\mathrm{Cd}^{2+}(a q)$ with $\mathrm{Pb}(s)-V$

Which substance is the strongest reducing agent? (Refer to Table I above.)
Strongest reducing agent $=$ easiest to oxidize $=$ most $-\mathcal{E}^{\circ}{ }^{\circ}{ }^{\circ}$
Also it is $\mathrm{Cr}(\mathrm{s})$ not $\mathrm{Cr}^{+3}(\mathrm{aq})$ because $\mathrm{Cr}(\mathrm{s})$ loses e-‘s, Cr^{3+} gains e-‘s and is reduced!
A. $\mathbf{C r}(s)$ - easiest to oxidize
B. $\mathrm{Pb}(s)$
C. $\mathrm{Cr}^{3+}(a q)$
D. $\mathrm{Hg}^{2+}(a q)$
E. $\mathrm{Hg}(s)$

1. Which of the following is TRUE regarding a galvanic cell?
A. Cations in the salt bridge move into the anode compartment. F
B. The overall cell emf is negative. F
C. Oxidation occurs at the cathode. F
D. Electrons travel from the cathode to the anode via a connecting wire. F

E . The anode electrode is losing mass as the cell runs. T; anorexic ox
Which of the following is true when one mole of $\mathrm{H}_{2} \mathrm{O}(l)$ changes to $\mathrm{H}_{2} \mathrm{O}(s)$?
Liquid to solid $=$ more order $=-\Delta \mathrm{S}$, liquid loses heat to form solid $=$ exo $=-\Delta \mathrm{H}$
A. $\Delta \mathrm{S}$ is + and $\Delta \mathrm{H}$ is +
B. $\Delta \mathrm{S}$ is + and $\Delta \mathrm{H}$ is -
C. $\Delta \mathrm{S}$ is - and $\Delta \mathrm{H}$ is +
D. ΔS is - and ΔH is -

Which of the following has the largest absolute entropy at $25^{\circ} \mathrm{C}$? largest $\mathrm{S}^{\circ}=$ gas with most atoms
A. $\mathrm{H}_{2} \mathrm{O}(l)$
B. $\mathrm{Pt}(s)$
C. $\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})$
D. $\operatorname{Ar}(g)$
E. $\mathrm{FePO}_{4(s)}$

In which of the following reactions is $\Delta \mathrm{S}^{\circ}$ negative?

1. $\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~s}) \rightarrow \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})$ s to $\mathrm{g}=+\Delta \mathrm{S}$ (more disorder)
2. $\mathrm{CS}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4(g)}+2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ \# gas particles $\downarrow=-\Delta \mathrm{S}$ (more order)
3. $\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \rightarrow \mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \mathrm{g}$ to $\mathrm{s}=-\Delta \mathrm{S}$ (more order)
A. 1 only
B. 2 only
C. 3 only
D. 1 and 2 only
E. 2 and 3 only

Which of the following does not have a standard free energy of formation of zero?
A. $\mathrm{Ne}(g)$
B. $\mathrm{I}_{2}(l) \mathrm{I}_{2}$ is solid
C. $\mathrm{N}_{2}(\mathrm{~g})$
D. $\mathrm{Au}(s)$
E. $\Delta \mathbf{G}_{f}^{\circ}=0$ for all of these

Some standard entropies $\left(\mathrm{S}^{\circ}\right)$ are given at $25^{\circ} \mathrm{C}$:

$\mathrm{N}_{2} \mathrm{O}_{5}(g) 355.2 \frac{\mathrm{~J}}{\mathrm{~K} \cdot \mathrm{~mol}}$	$\mathrm{NO}_{2}(\mathrm{~g})$	$239.9 \frac{\mathrm{~J}}{\mathrm{~K} \cdot \mathrm{~mol}}$	$\mathrm{O}_{2}(\mathrm{~g})$
$204.8 \frac{\mathrm{~J}}{\mathrm{~K} \cdot \mathrm{~mol}}$			

Calculate $\Delta \mathrm{S}^{\circ}$ in $\frac{J}{K}$ for the reaction: $2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$

$$
\Delta \mathrm{S}^{\circ}=(4 \mathrm{~mol})\left(239.9 \frac{\mathrm{~J}}{K \cdot \mathrm{~mol}}\right)+(1 \mathrm{~mol})\left(204.8 \frac{\mathrm{~J}}{K \cdot \mathrm{~mol}}\right)-(2 \mathrm{~mol})\left(355.2 \frac{\mathrm{~J}}{K \cdot m o l}\right)=+454 \frac{\mathrm{~J}}{K}
$$

A. $89.5 \frac{\mathrm{~J}}{\mathrm{~K}}$
B. $-89.5 \frac{\mathrm{~J}}{\mathrm{~K}}$
C. $-454.0 \frac{\mathrm{~J}}{\mathrm{~K}}$
D. $+454.0 \frac{\mathrm{~J}}{\mathrm{~K}}$
E. $227.0 \frac{\mathrm{~J}}{\mathrm{~K}}$
$\Delta \mathrm{H}^{\circ}=-90.84 \mathrm{~kJ}$ for the following reaction: $2 \mathrm{Hg}(I)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{HgO}(s)$. This reaction is most likely to be $-\Delta H^{\circ}=$ exo; more order $=-\Delta S^{\circ} ; \Delta \mathbf{G}^{\circ}=-$ at low \mathbf{T} but + at high \mathbf{T}
A. spontaneous at all temperatures
B. spontaneous at high temperatures but nonspontaneous at low temperatures
C. spontaneous at low temperatures but nonspontaneous at high temperatures
D. nonspontaneous at all temperatures

Calculate $\Delta \mathrm{G}^{\circ}$ for the following reaction at $25^{\circ} \mathrm{C}$:
$\mathrm{I}_{2(g)}+\mathrm{Cl}_{2(g)} \rightarrow 2 \mathrm{ICl}_{(g)} ; \Delta \mathrm{H}^{\circ}=-26.9 \mathrm{~kJ} ; \Delta \mathrm{S}^{\circ}=11.3 \mathrm{~J} / \mathrm{K}$
$\Delta \mathbf{G}^{\circ}=-26.9 \mathrm{~kJ}-(298 \mathrm{~K})(0.0113 \mathrm{~J} / \mathrm{K})=-30.3 \mathrm{~kJ}$
A. -30.3 kJ
B. -23.5 kJ
C. -27.2 kJ
D. 18.4 kJ
E. -3394 kJ
$\Delta G^{\circ}=-36.2 \mathrm{~kJ}$ for a given reaction at $25^{\circ} \mathrm{C}$. Calculate the equilibrium constant, K, at $25^{\circ} \mathrm{C}$. $K=e^{-\left(\frac{-36.2 \frac{\mathrm{~kJ}}{\mathrm{~mol}}}{8.314 \times 10^{-3} \frac{\mathrm{~kJ}}{\mathrm{Kmol}} \times 298 \mathrm{~K}}\right)}$
A. 0.985
B. 1.01
C. 4.51×10^{-7}
D. 2.22×10^{6}
E. 4.08×10^{14}

The free energy vs. reaction progress diagram below is characteristic of a reaction with:

Reaction Progress \rightarrow
A. $\Delta \mathrm{G}^{\circ}>0, \varepsilon^{0}<0, \mathrm{~K}<1$
B. $\Delta G^{\circ}>0, \varepsilon^{0}<0, K>1$
C. $\Delta G^{\circ}=0, \varepsilon^{\circ}=0, K=1$
D. $\Delta G^{\circ}<0, \varepsilon^{\circ}>0, K<1$
E. $\Delta G^{\circ}<0, \varepsilon^{\circ}>0, K>1$

Part Two. Short Answer and Numerical Problems. For calculation questions, you must SHOW YOUR WORK, including UNITS, to receive full credit. (58 points)

1. Calculate the molar solubility of $\mathrm{Fe}(\mathrm{OH})_{3}$ in pure water. $\mathrm{For} \mathrm{Fe}(\mathrm{OH})_{3}, \mathrm{~K}_{\mathrm{sp}}=1.1 \times 10^{-36}$. (8 pts)
$\mathrm{Fe}(\mathrm{OH})_{3}(s) \leftrightarrows \mathrm{Fe}^{3+}(a q)+3 \mathrm{OH}^{-}(a q)$

	$\mathrm{Fe}(\mathrm{OH})_{3}(s) \leftrightarrows \mathrm{Fe}^{3+}(a q)+3 \mathrm{OH}^{-}(a q)$		
I		0	0
C		+x	+3 x
E		x	3 x

$$
\begin{aligned}
& \mathrm{K}_{\text {sp }}=\left[\mathrm{Fe}^{3}+\right][\mathrm{OH}-]^{3} \\
& 1.1 \times 10^{-36}=x(3 \mathrm{x})^{3} \\
& 1.1 \times 10^{-36}=27 \mathrm{x}^{4} \\
& \mathrm{x}=\left(\frac{1.1 \times 10^{-36}}{27}\right)^{1 / 4}=\left(4.07 \times 10^{-38}\right)^{1 / 4}=4.5 \times 10^{-10} \mathrm{M}
\end{aligned}
$$

solubility $=4.5 \times 10^{-10} \mathrm{M}$
2. If you mix 200.0 mL of $2.40 \times 10^{-3} \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3(a q)}$ with 400.0 mL of $1.50 \times 10^{-3} \mathrm{M} \mathrm{AgNO}_{3}(a q)$, does $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ precipitate? Show your work mathematically by calculating the Q value.
For $\mathrm{Ag}_{2} \mathrm{CO}_{3}, \mathrm{~K}_{\mathrm{sp}}=8.5 \times 10^{-12} . \quad(10 \mathrm{pts})$
$\mathrm{Na}_{2} \mathrm{CO}_{3(a q)}+2 \mathrm{AgNO}_{3(a q)} \rightarrow \mathrm{Ag}_{2} \mathrm{CO}_{3(s)}+2 \mathrm{NaNO}_{3(a q)}$
Solubility reaction: $\mathrm{Ag}_{2} \mathrm{CO}_{3}(s) \rightleftharpoons 2 \mathrm{Ag}^{+}+\mathrm{CO}_{3}{ }^{2-} \quad \mathrm{K}_{\mathrm{sp}}=8.5 \times 10^{-12}$

$$
\mathrm{Q}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CO}_{3}{ }^{2-}\right]
$$

$\left[\mathrm{Na}_{2} \mathrm{CO}_{3}\right]=\left[\mathrm{CO}_{3}{ }^{2}\right]=2.40 \times 10^{-3} \mathrm{M} \mathrm{CO}_{3}{ }^{2-}\left(\frac{200.0 \mathrm{ml}}{600.0 \mathrm{ml}}\right)=8.00 \times 10^{-4} \mathrm{M} \mathrm{CO}_{3}{ }^{2-}$
$\left[\mathrm{AgNO}_{3}\right]=\left[\mathrm{Ag}^{+}\right]=1.50 \times 10^{-3} \mathrm{M} \mathrm{Ag}+\left(\frac{400.0 \mathrm{ml}}{600.0 \mathrm{ml}}\right)=1.00 \times 10^{-3} \mathrm{M} \mathrm{Ag}^{+}$
$Q=\left(1.00 \times 10^{-3}\right)^{2}\left(8.00 \times 10^{-4}\right)$
$Q=8.00 \times 10^{-10}$
$Q>K_{\text {sp }}$, so $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ precipitates
3. Answer the following questions about this galvanic cell: $\operatorname{Cr}(\mathrm{s})\left|\mathrm{Cr}^{3+}(\mathrm{aq}) \| \mathrm{Cd}^{2+}(\mathrm{aq})\right| \mathrm{Cd}(\mathrm{s})$. Refer to Table I on page 1 for the standard reduction potentials. (20 pts)
A. What is the overall balanced cell reaction? (3 pts)
$2 \mathrm{Cr}(\mathrm{s})+3 \mathbf{C d}^{2+}(\mathrm{aq}) \rightarrow 2 \mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathbf{C d}(\mathrm{~s})$
B. What is the standard cell potential, $\mathcal{E}_{\text {cel }}^{\circ}$? $(2 \mathrm{pts}) \mathcal{E}_{\text {cell }}^{\circ}=0.74 \mathrm{~V}+(-0.40 \mathrm{~V})=+0.34 \mathrm{~V}$
C. What is the oxidation $1 / 2$ reaction? (2 pts) $\mathrm{Cr}(\mathrm{s}) \rightarrow \mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{e}-$
D. Which electrode is gaining mass? (2 pts) Cd(s) (the cathode)
E. Calculate $\Delta \mathrm{G}^{\circ}$ for this cell. (5 pts)
$\Delta G^{\circ}=\left(-6 \mathrm{~mol}\right.$ e-) $(96500 \mathrm{~J} / \mathrm{Vmol} \mathrm{e}-)(0.34 \mathrm{~V})=-2.0 \times 10^{5} \mathrm{~J}$ or $-2.0 \times 10^{2} \mathrm{~kJ}$
F. Calculate the equilibrium constant, K , for this cell. (6 pts)

$$
\mathrm{E}^{\circ}=\frac{0.0592}{n} \log \mathrm{~K}, \mathrm{n}=6, \log \mathrm{~K}=\frac{6(0.34)}{0.0592}=34.46 \quad \mathrm{~K}=10^{34.46}=2.9 \times 10^{34}
$$

$\Delta G^{\circ}=-R T \ln K \ln K=\left(\frac{-2.0 \times 10^{2} \frac{\mathrm{~kJ}}{\mathrm{~mol}}}{8.314 \times 10^{-3} \frac{\mathrm{~kJ}}{\mathrm{~K} \cdot \mathrm{~mol}} \times 298 \mathrm{~K}}\right) \quad \ln \mathrm{K}=+80.42 \quad \mathrm{~K}=\mathrm{e}^{80.42}=1.14 \times 10^{35}$
If you use the free energy, it comes out a bit different due to rounding -200 kJ (0.0592 is also rounded off in the standare emf formula).
4. A certain galvanic cell is constructed based on the following half reactions: (20 pts)

$$
\begin{array}{ll}
\mathrm{Cu}^{+}(a q)+\mathrm{e}^{-} \rightarrow \mathrm{Cu}(s) & \wp^{\circ}{ }_{\text {red }}=0.52 \mathrm{~V} \\
\mathrm{Sn}^{4+}(a q)+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}^{2+}(a q) & \wp^{\circ} \text { red }=0.15 \mathrm{~V}
\end{array}
$$

A. Assign the anode and cathode half reactions for the cell. (Make sure to write the reactions in the appropriate direction!) (4 pts)
cathode half reaction: $\mathbf{C u}^{+}(a q)+\mathrm{e}^{-} \rightarrow \mathbf{C u}(s)$
anode half reaction: $\mathbf{S n}^{2+}(a q) \rightarrow \mathbf{S n}^{4+}(a q)+2 \mathrm{e}^{-}$
B. Write an overall balanced reaction for the cell and determine the standard cell potential, $\mathcal{E}_{\text {cell }}^{\circ}$. $(6 \mathrm{pts})$
Overall reaction: $\quad 2 \mathbf{C u}^{+}(a q)+\mathbf{S n}^{2+}(a q) \rightarrow 2 \mathbf{C u}(s)+\mathbf{S n}^{4+}(a q)$

$$
\mathcal{E}_{\text {cell }}^{\circ}=0.52 \mathrm{~V}+(-0.15 \mathrm{~V})=+0.37 \mathrm{~V}
$$

C. $(1 \mathrm{pt})$ atom oxidized: $\mathrm{Sn}^{2+} \quad(1 \mathrm{pt})$ atom reduced: $\mathbf{C u}^{+}$
D. Calculate the cell potential, $\mathcal{E}_{\text {cell }}$, when $\left[\mathrm{Cu}^{+}\right]=1.75 \mathrm{M},\left[\mathrm{Sn}^{4+}\right]=0.45 \mathrm{M}$ and $\left[\mathrm{Sn}^{2+}\right]=1.15$ M at $25^{\circ} \mathrm{C}$. (8 pts)

$$
\begin{gathered}
\mathrm{E}=\mathrm{E}^{\circ}-\frac{0.0592}{n} \log \mathrm{Q} \quad \mathrm{n}=2 \quad \mathrm{Q}=\frac{\left[\mathrm{Sn}^{4+}\right]}{\left[\mathrm{Cu}^{+}\right]^{2}\left[\mathrm{Sn}^{2+}\right]}=\frac{[0.45]}{[1.75]^{2}[1.15]} \quad \text { Thus, } \mathrm{Q}=0.128 \\
\mathrm{E}=0.37 \mathrm{~V}-\frac{0.0592 \mathrm{~V}}{2}(\log 0.128)=0.37 \mathrm{~V}-[(0.0296 \mathrm{~V})(-0.893)] \\
\mathrm{E}=0.37 \mathrm{~V}-(-0.0264 \mathrm{~V}) \quad \mathrm{E}=0.40 \mathrm{~V}
\end{gathered}
$$

