SA-SB TITRATION PROBLEMS KEY

- 1. In the beakers below:
- A. Draw 2 moles HCI. SA solution (SA completely ionizes)
- B. Draw what happens when 1 mole NaOH is added. Excess SA (moles SA > moles SB)
- C. Draw what happens when 2 moles NaOH are added. Eq pt (moles SA = moles SB); For SA-SB have neutral salt solution so pH = 7
- D. Draw what happens when 3 moles NaOH are added. Excess SB (moles SB > moles SB)

Note: for titration problems, you will need to calculate moles or mmoles of acid and base.

$$M = \frac{mol}{L} = \frac{mmol}{mL} \implies thus, moles = L \times M \text{ or mmoles} = mL \times M$$

General steps for <u>SA-SB titration</u>:

- 1. Write A-B neutralization reaction.
- 2. Calculate mmol of acid and base present.
- 3. Subtract smaller amount (LR) to find mmol of excess acid or base remaining.
- 4. Divide mmol excess acid by total V (mL) to calculate $[H_3O^+]$ (or mmol excess base by the total mL to find $[OH^-]$)
- 5. $pH = -log [H_3O^+]$ (or find pOH if [OH] is present and convert to pH)

SA

2. Consider titrating 20.00 mL of 0.200 M HCl with 0.100 M NaOH.

What volume of NaOH must be added to reach the equivalence point?

neutralization reaction: HCl + NaOH
$$\rightarrow$$
 NaCl + H₂O

at EQ pt: moles acid = moles of base

mmoles HCL = 20.00 mL×
$$\left(\frac{0.200 \text{ mmol HCl}}{\text{mL}}\right)$$
 = 4.00 mmol HCl = 4.00 mmol NaOH

mL NaOH = 4.00 mmol
$$\left(\frac{mL}{0.100 \text{ mmol}}\right)$$
 = 40.0 mL NaOH = V NaOH at eq pt

Calculate the pH of the solution after the following volumes of NaOH have been added:

a) 0 ml of NaOH added – only SA is present initially:

Since SA completely ionizes: $[HCI] = [H_3O^+] = 0.200 \text{ M HCI} (3 \text{ sf})$

pH = -log [H₃O⁺] pH= -log (0.200) pH=0.700 ✓ low pH for SA

b) 5.00 mL NaOH - When SB is added to SA, a neutralization reaction occurs:

neutralization reaction: HCl + NaOH \rightarrow NaCl + H₂O

mmol HCl = $20.00 \text{ mL} \times 0.200 \text{ M} = 4.00 \text{ mmol HCl}$

mmol NaOH = 5.00 mL × 0.100 M = 0.500 mmol NaOH (Limiting Reactant!)

mmol excess acid = 4.00 mmol - 0.500 mmol = 3.50 mmol HCl

For SA:
$$[H_3O^+] = [HCI]$$
 $[H_3O^+] = \frac{3.50 \text{ mmoles}}{25.00 \text{ mL}} = 0.140 \text{ M}$

pH = - log [H₃O⁺] pH = - log 0.140 <u>pH = **0.854**</u> ✓ excess SA, pH<7

mmol NaOH = 40.00 mL × 0.100 M = 4.00 mmol NaOH

c) 40.00 mL NaOH

from part b: mmol HCI = 4.00 mmol HCI

moles acid = moles base \Rightarrow pH = 7 at Eq pt for SA-SB titration!

✓ All the acid and base has been neutralized and all that remains is Na⁺, Cl⁻ and water. All neutral substances!

d) 50.00 mL NaOH mmol NaOH = 50.00 mL × 0.100 M = 5.00 mmol NaOH

from part b: mmol HCI = 4.00 mmol HCI (Limiting Reactant!)

mmol excess base = 5.00 mmol - 4.00 mmol = 1.00 mmol NaOH

For SB: $[OH^-] = [NaOH]$ $[OH^-] = \frac{1.00 \text{ mmoles}}{70.00 \text{ ml}} = 0.01429 \text{ M}$

pOH = -log (0.01429) = 1.845 pH = 12.155 ✓ excess SB, pH > 7

WA-SB TITRATION PROBLEMS KEY

- 1. In the beakers below.
 - A. Draw 2 moles of acetic acid. WA (For 2 moles of WA assume it has not ionized)
 - B. Draw what happens when 1 mole KOH is added. (Buffer: WA, conj base)
 - C. Draw what happens when 2 moles KOH are added. Eq pt (WB hydrolysis)
 - D. Draw what happens when 3 moles KOH are added. Excess SB remains

2. Consider the titration of 50.00 mL of 0.100 M CH_3CO_2H with 0.150 M KOH. For acetic acid, $K_a = 1.8 \times 10^{-5}$ WA SB

For WA-SB titration problems, you must consider what substances are present and write the appropriate hydrolysis or neutralization reaction!

What volume of NaOH must be added to reach the equivalence point?

neutralization: $CH_3CO_2H + NaOH \rightarrow NaCH_3CO_2 + H_2O$

at EQ pt: moles acid = moles of base

mmoles = 50.00 mL×
$$\left(\frac{0.100 \text{ mmol CH}_3\text{CO}_2\text{H}}{\text{mL}}\right)$$
 = 5.00 mmol CH₃CO₂H = 5.00 mmol KOH
mL KOH = 5.00 mmol $\left(\frac{\text{mL}}{0.150 \text{ mmol}}\right)$ = 33.33 mL NaOH = V NaOH at eq pt

Calculate the pH of the solution after the following volumes of NaOH have been added:

a) 0 mL KOH - we just have a WA solution!

Strategy: write WA hydrolysis, ICE & K_a , x = [H₃O⁺]

	CH ₃ CO ₂ H +	$H_2O(l)$	⊨ H₃O⁺ -	⊢ CH ₃ CO ₂ [−]
I (M)	0.100		0	0
C (M)	-x		+X	+x
E (M)	0.100 - x		Х	х

 $K_{a} = \frac{[H_{3}O^{+}][CH_{3}CO_{2}^{-}]}{[CH_{3}CO_{2}H]} \qquad \text{Assume x is small!} \quad 1.8 \times 10^{-5} = \frac{x^{2}}{0.100}$

$$x = [H_3O^+] = \sqrt{(1.8 \times 10^{-5}) \times (0.100)} = 1.34 \times 10^{-3} M$$

pH = -log 1.34×10⁻³ pH= 2.87 √relatively low pH for WA $pH = -log [H_3O^+]$

Other regions of WA curve:

- 1. Write WA-SB neutralization reaction.
- 2. Calculate mmol of acid and base present.
- 3. Plug mol into change table to determine what remains after neutralization:
 - \Rightarrow If moles HA > moles SB, both HA and A⁻ are present so it's a buffer problem.
 - \Rightarrow If moles HA = moles SB, only A⁻ is left so its WB problem (eq pt).
 - \Rightarrow If moles SB > moles WA, excess OH⁻ is left so its SB problem.

b) 10.00 mL KOH mmoles KOH = mmol OH⁻ = 10.00 mL × 0.150 M = 1.50 mmol KOH

mmoles $CH_3CO_2H = 50.00 \text{ mL} \times 0.100 \text{ M} = 5.00 \text{ mmol} CH_3CO_2H$

neutralization: $CH_3CO_2H + OH^- \rightarrow CH_3CO_2^- + H_2O$

Neutralization rxn	$CH_3CO_2H + OH^- \to CH_3CO_2^- + H_2O(l)$				
initial (mmol)	5.00	1.50	0		
Change (mmol)	-1.50	-1.50	+1.50		
Final (mmol)	3.50	0	1.50		

 $CH_{3}CO_{2}H$ (WA) and $CH_{3}CO_{2}$ (WB) remain = buffer solution!

*Can use HH equation – have WA and Conjugate Base!

pH =-log K_a + log $\left(\frac{[A^-]}{[HA]}\right)$ pH = -log 1.82

pH = 4.74 + -.368 **bH = 4.380**

 $pH \uparrow after SB added;$ now have buffer soln containing acetic acid and acetate ions.

c) the equivalence point volume of KOH = 33.33 mL WA-SB eq pt is WB problem!

from part b, mmoles $CH_3CO_2H = 5.00 \text{ mmol } CH_3CO_2H$

mmoles KOH = mmol OH = $33.33 \text{ mL} \times 0.150 \text{ M} = 5.00 \text{ mmol KOH}$

neutralization: $CH_3CO_2H + OH^- \rightarrow CH_3CO_2^- + H_2O$

Neutralization rxn $CH_3CO_2H + OH^- \rightarrow CH_3CO_2^- + H_2O(I)$

initial (mmol)	5.00	5.00	0	
Change (mmol)	-5.00	-5.00	+5.00	
Final (mmol)	0	0	5.00	

At eq pt: all WA & SB have reacted, only CH₃CO₂ ⁻ (WB) remains!

 \Rightarrow Set up WB hydrolysis rxn, solve K_b for x = [OH⁻]

Convert mmol (or mol) acetate to Molarity – must use M in K_b expression!

$$M = \frac{\text{mmol}}{\text{mL acid + mL base}} \qquad [CH_3CO_2^{-1}] = \frac{5.00 \text{ mmol}}{50.00 + 33.33 \text{ mL}} = 0.0600 \text{ M}$$

WB hydrolysis: $CH_3CO_2 + H_2O \Rightarrow CH_3CO_2H + OH^2$

	$CH_3CO_2^- + H_2O$		\Rightarrow CH ₃ CO ₂ H	+ OH ⁻
I (M)	0.0600		0	0
C (M)	-x		+x	+X
E (M)	0.0600 - x		x	x

Need K_b instead of K_a for WB: K_b for CH₃CO₂⁻ = $\frac{1 \times 10^{-14}}{1.8 \times 10^{-5}}$ = 5.56×10⁻¹⁰

$$K_{b} = \frac{[CH_{3}CO_{2}H][OH^{-}]}{[CH_{3}CO_{2}^{-}]} \qquad 5.56 \times 10^{-10} = \frac{x^{2}}{0.0600}$$
$$x = [OH^{-}] = \sqrt{0.0600} (5.56 \times 10^{-10}) = 5.78 \times 10^{-6} M$$
$$pOH = -\log [OH^{-}] = -\log 5.78 \times 10^{-6} = 5.24 \qquad pH = 14 - 5.24 = 8.76$$

 \Rightarrow \checkmark At the equivalence point for a WA/SB titration, the pH > 7 due to the OH⁻ produced by the conjugate base hydrolysis reaction.

d) 50.00 mL of KOH

from part b, mmoles $CH_3CO_2H = 5.00 \text{ mmol } CH_3CO_2H$

mmoles KOH = mmol OH⁻ = 50.00 mL \times 0.150 M = 7.50 mmol OH⁻

neutralization: $CH_3CO_2H + OH^- \rightarrow CH_3CO_2^- + H_2O$

Neutralization rxn	→ CH ₃ CO ₂ ⁻ +	H ₂ O(I)		
initial (mmol)	5.00	7.50	0	
Change (mmol)	-5.00	-5.00	+5.00	
Final (mmol)	0	2.50	5.00	

moles excess SB remaining = 2.50 mmoles KOH

$$M OH^{-} = M KOH = \frac{2.50 \text{ mmol}}{100 \text{ mL}} = 0.0250 \text{ M}$$

H = 14 – 1.602 = <mark>12.398</mark>

√high pH since SB not all neutralized

*Excess NaOH remains - this is the primary source of OH⁻. We can neglect the hydrolysis of the conjugate base because this contributes a relatively small amount of OH⁻ compared to the amount that comes directly from the excess NaOH.

OH