Diebolt CHM 152/154 Spring '05

Quiz 1. Take Home Key

- $8MnO_{4}^{-} + 14H^{+} + 5S_{2}O_{3}^{2-} \rightarrow 8Mn^{2+} + 7H_{2}O_{4} + 10SO_{4}^{2-}$ 1. Given the following reaction:
 - a) Express the general rate of reaction in terms of each of the reactants and products. (2 pt)

Rate =
$$-\frac{\Delta[MnO_4^-]}{8\Delta t} = -\frac{\Delta[H^+]}{14\Delta t} = -\frac{\Delta[S_2O_3^{2-}]}{5\Delta t} = \frac{\Delta[Mn^{2+}]}{8\Delta t} = \frac{\Delta[H_2O]}{7\Delta t} = \frac{\Delta[SO_4^{2-}]}{10\Delta t}$$

b) If the rate of appearance of H₂O is 0.022 M/s, what is the rate of disappearance of $S_2O_3^{2-}$? (2 pt)

$$\frac{0.022 \,mol \,H_2 O}{L \cdot s} \times \frac{5 \,mol \,S_2 O_3^{2^-}}{7 \,mol \,H_2 O} = \frac{1.6 \times 10^{-2} \frac{M}{s}}{s} \,S_2 O_3^{2^-}$$

2. Consider rate data obtained for the following reaction:

21 ⁻	+	$4 H^{+} + 2VO_{2}^{+} \rightarrow I_{2}$	+ 2VO ²⁺ +	2H ₂ O	
	Trial	[I ⁻] M	[H⁺] M	[VO ₂ ⁺] M	Rate $\frac{M}{s}$
	1	0.00200	0.0333	0.0100	2.89 x 10 ⁻⁹
	2	0.00200	0.100	0.0100	2.60 x 10 ⁻⁸
	3	0.00200	0.100	0.0025	6.50 x 10⁻ ⁹
	4	0.00600	0.100	0.0100	7.80 x 10 ⁻⁸

a) What is the rate law for this reaction? (4 pts)

I⁻: use 2 \rightarrow 4, Order I⁻= 1; H⁺: use 1 \rightarrow 2; Order H⁺ = 2; VO₂⁺: use 3 \rightarrow 2; Order VO₂⁺ = 1 Rate = $k[I^{-}][H^{+}]^{2}[VO^{+}_{2}]$

b) What is the value of the rate constant, k? (Include the appropriate units for k!) (2 pts)

 $\mathbf{k} = \frac{\text{Rate}}{[I^-][H^+]^2[\text{VO}_2^+]} = \frac{2.89 \times 10^{-9} \text{ M/s}}{(0.00200 \text{ M})(0.0333 \text{ M})^2(0.0100 \text{ M})} = \frac{1.30 \times 10^{-1} \text{ M}^{-3} \text{s}^{-1}}{1.30 \times 10^{-1} \text{ M}^{-3} \text{s}^{-1}}$

c) What is the rate of reaction if $[I^-]$ is 0.00825 M, $[H^+]$ is 0.0750 M and $[VO_2^+]$ is 0.00425 M? (2 pt)

Rate = $k[I^{-}][H^{+}]^{2}[VO_{2}^{+}] = 1.30 \times 10^{-1} M^{-3} s^{-1}(0.00825 M) (0.0750 M)^{2}(0.00425 M) = 2.56 \times 10^{-8} M/s$

3. The first order reaction, A \rightarrow Products, has a rate constant of 2.81x10⁻⁴ min⁻¹ at 25 °C. a) What is the half life for this process? (1 pts)

$$\mathbf{t_{1/2}} = \frac{0.693}{k} = \frac{0.693}{2.81 \times 10^{-4} \text{ min}^{-1}} = 2.47 \times 10^3 \text{ min}$$

b) How much of a 375 g sample of A will remain after 5 days? (3 pts)

$$[A]_{0} = 375 \text{ g}, \text{ k} = 2.81 \times 10^{-4} \text{ min}^{-1}, \text{ t} = 5 \text{ days} \left(\frac{24 \text{ hr}}{1 \text{ day}}\right) \left(\frac{60 \text{ min}}{1 \text{ hr}}\right) = 7200 \text{ min}$$

$$\ln \left(\frac{[A]_{t}}{[A]_{0}}\right) = - \text{ kt} \qquad \ln \left(\frac{[A]_{t}}{[375 \text{ g}]_{0}}\right) = -2.81 \times 10^{-4} \text{ min}^{-1} (7200 \text{ min}) = -2.023$$

$$\left(\frac{[A]_{t}}{[375 \text{ g}]_{0}}\right) = e^{-2.023} = 1.323 \times 10^{-1} \qquad [A]_{t} = (375 \text{ g})(1.323 \times 10^{-1}) = 49.6 \text{ g of } A$$

c) How many minutes will it take for 18.0 % of a sample of A to decompose? (3 pts)

If 18.0% of A has decomposed, 82% will remain: $[A]_t = 0.82[A]_0$ In 0.82 = -(2.81x10⁻⁴ min⁻¹)t -0.1985 = -(2.81x10⁻⁴ min⁻¹)t t = -0.1985/(-2.81x10⁻⁴ min⁻¹) = 7.06x10² min

4. Kinetic data was obtained for the reaction: $SO_2CI_2 \rightarrow SO_2 + CI_2$

	Data Set				
	time	[SO2CI2]	In[SO2Cl2]	1/[SO2Cl2]	
	(secs)	(M)		(1/M)	
1	0.0	0.1000	-2.303	10.00	1
2	100.0	0.0876	-2.435	11.42	
3	200.0	0.0768	-2.567	13.02	
4	300.0	0.0673	-2.699	14.86	
5	400.0	0.0590	-2.830	16.95	
6	500.0	0.0517	-2.962	19.34	
7	700.0	0.0397	-3.226	25.19	
8	900.0	0.0305	-3.490	32.79	
9	1100.0	0.0234	-3.755	42.74	-
10	4			4	

a) Make appropriate plots to determine if the reaction is zero, first or second order with respect to SO₂Cl₂ and include original copies of all 3 plots (computer-generated preferred or use graph paper). Do NOT show all 3 plots on one set of axes – if you do this, it makes it impossible to tell which graph is linear. Use a regression line (straight line) for the linear graph and a "connect-the-points" curve for any non-linear graphs. Make sure the axes are appropriately labeled. (9 pts)

b) Based on your graphs, what is the order of the reaction with respect to SO_2Cl_2 ? (1 pt)

1st order (This plot is the most linear)

c) What is the value of k based on the graph showing the correct order of SO₂Cl₂? (Include units for k!) (1 pt)