Diebolt CHM 152/154 Spring '05

Quiz 1. Take Home Key

1. Given the following reaction: $\quad 8 \mathrm{MnO}_{4}^{-}+14 \mathrm{H}^{+}+5 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-} \rightarrow 8 \mathrm{Mn}^{2+}+7 \mathrm{H}_{2} \mathrm{O}+10 \mathrm{SO}_{4}^{2-}$
a) Express the general rate of reaction in terms of each of the reactants and products. (2 pt)

$$
\text { Rate }=-\frac{\Delta\left[\mathrm{MnO}_{4}^{-}\right]}{8 \Delta t}=-\frac{\Delta\left[\mathrm{H}^{+}\right]}{14 \Delta t}=-\frac{\Delta\left[\mathrm{S}_{2} \mathrm{O}_{3}^{2-}\right]}{5 \Delta t}=\frac{\Delta\left[\mathrm{Mn}^{2+}\right]}{8 \Delta t}=\frac{\Delta\left[\mathrm{H}_{2} \mathrm{O}\right]}{7 \Delta t}=\frac{\Delta\left[\mathrm{SO}_{4}^{2-}\right]}{10 \Delta t}
$$

b) If the rate of appearance of $\mathrm{H}_{2} \mathrm{O}$ is $0.022 \mathrm{M} / \mathrm{s}$, what is the rate of disappearance of $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}$? (2 pt)

$$
\frac{0.022 \mathrm{~mol} \mathrm{H}}{2} \mathrm{O}, ~ 5 \frac{5 \mathrm{~mol} \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}}{7 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=\mathbf{1 . 6} \times 10^{-2} \frac{\mathrm{M}}{\mathrm{~s}} \mathbf{S}_{\mathbf{2}} \mathbf{O}_{3}^{2-}
$$

2. Consider rate data obtained for the following reaction:

$$
2 \mathrm{I}^{-}+4 \mathrm{H}^{+}+2 \mathrm{VO}_{2}^{+} \rightarrow \mathrm{I}_{2}+2 \mathrm{VO}^{2+}+2 \mathrm{H}_{2} \mathrm{O}
$$

Trial	$[I] \mathrm{M}$	$\left[\mathrm{H}^{+}\right] \mathrm{M}$	$\left[\mathrm{VO}_{2}^{+}\right] \mathrm{M}$	Rate $\frac{M}{s}$
1	0.00200	0.0333	0.0100	2.89×10^{-9}
2	0.00200	0.100	0.0100	2.60×10^{-8}
3	0.00200	0.100	0.0025	6.50×10^{-9}
4	0.00600	0.100	0.0100	7.80×10^{-8}

a) What is the rate law for this reaction? (4 pts)
I^{-}: use $2 \rightarrow 4$, Order $\mathrm{I}^{-}=1$; H^{+}: use $1 \rightarrow 2$; Order $\mathrm{H}^{+}=2 ; \mathrm{VO}_{2}^{+}$: use $3 \rightarrow 2$; Order $\mathrm{VO}_{2}^{+}=1$

Rate $=k[\mathrm{I}]\left[\mathrm{H}^{+}\right]^{2}\left[\mathrm{VO}_{2}^{+}\right]$

b) What is the value of the rate constant, k ? (Include the appropriate units for k !) (2 pts)

$$
\mathbf{k}=\frac{\text { Rate }}{\left[\mathrm{I}^{-}\right]\left[\mathrm{H}^{+}\right]^{2}\left[\mathrm{VO}_{2}^{+}\right]}=\frac{2.89 \times 10^{-9} \mathrm{M} / \mathrm{s}}{(0.00200 \mathrm{M})(0.0333 \mathrm{M})^{2}(0.0100 \mathrm{M})}=1.30 \times 10^{-1} \mathbf{M}^{-3} \mathbf{s}^{-1}
$$

c) What is the rate of reaction if $[\mathrm{l}]$ is $0.00825 \mathrm{M},\left[\mathrm{H}^{+}\right]$is 0.0750 M and $\left[\mathrm{VO}_{2}^{+}\right]$is 0.00425 M ? $(2 \mathrm{pt})$

Rate $=\mathrm{k}\left[\mathrm{I}^{-}\right]\left[\mathrm{H}^{+}\right]^{2}\left[\mathrm{VO}_{2}^{+}\right]=1.30 \times 10^{-1} \mathrm{M}^{-3} \mathrm{~s}^{-1}(0.00825 \mathrm{M})(0.0750 \mathrm{M})^{2}(0.00425 \mathrm{M})=\mathbf{2 . 5 6 \times 1 0 ^ { - 8 }} \mathbf{~ M} / \mathbf{s}$
3. The first order reaction, $\mathrm{A} \rightarrow$ Products, has a rate constant of $2.81 \times 10^{-4} \mathrm{~min}^{-1}$ at $25^{\circ} \mathrm{C}$.
a) What is the half life for this process? (1 pts)

$$
\mathbf{t}_{1 / 2}=\frac{0.693}{k}=\frac{0.693}{2.81 \times 10^{-4} \mathrm{~min}^{-1}}=2.47 \times 10^{3} \mathrm{~min}
$$

b) How much of a 375 g sample of A will remain after 5 days? (3 pts)
$[A]_{0}=375 \mathrm{~g}, \mathrm{k}=2.81 \times 10^{-4} \mathrm{~min}^{-1}, \mathrm{t}=5$ days $\left(\frac{24 \mathrm{hr}}{1 \text { day }}\right)\left(\frac{60 \mathrm{~min}}{1 \mathrm{hr}}\right)=7200 \mathrm{~min}$
$\ln \frac{[\mathbf{A}]_{\mathrm{t}}}{[\mathbf{A}]_{0}}=-\mathrm{kt} \quad \ln \left(\frac{[\mathrm{A}]_{\mathrm{t}}}{[375 \mathrm{~g}]_{0}}\right)=-2.81 \times 10^{-4} \mathrm{~min}^{-1}(7200 \mathrm{~min})=-2.023$

$$
\left(\frac{[\mathrm{A}]_{\mathrm{t}}}{[375 \mathrm{~g}]_{0}}\right)=\mathrm{e}^{-2.023}=1.323 \times 10^{-1} \quad[\mathrm{~A}]_{\mathrm{t}}=(375 \mathrm{~g})\left(1.323 \times 10^{-1}\right)=49.6 \mathrm{~g} \text { of } \mathcal{A}
$$

c) How many minutes will it take for 18.0% of a sample of A to decompose? (3 pts)

If 18.0% of A has decomposed, 82% will remain: $\left.[A]_{t}=\mathbf{0 . 8 2 [A}\right]_{0}$

$$
\begin{aligned}
\text { In } 0.82 & =-\left(2.81 \times 10^{-4} \mathrm{~min}^{-1}\right) \mathrm{t} \quad-0.1985=-\left(2.81 \times 10^{-4} \mathrm{~min}^{-1}\right) \mathrm{t} \\
\mathrm{t} & =-0.1985 /\left(-2.81 \times 10^{-4} \mathrm{~min}^{-1}\right)=7.06 \times 10^{2} \mathrm{~min}
\end{aligned}
$$

4. Kinetic data was obtained for the reaction: $\mathrm{SO}_{2} \mathrm{Cl}_{2} \rightarrow \mathrm{SO}_{2}+\mathrm{Cl}_{2}$

	Data Set			
	$\begin{array}{\|c\|} \hline \text { time } \\ (\text { secs }) \end{array}$	$\left\lvert\, \begin{gathered} \mathrm{SO} 2 \mathrm{Cl} 2 \mathrm{]} \\ (\mathrm{M}) \end{gathered}\right.$	n[SO2Cl2]	$\begin{gathered} 1 /[\mathrm{SO} 2 \mathrm{Cl} 2] \\ (1 / \mathrm{M}) \end{gathered}$
1	0.0	0.1000	-2.303	10.00
2	100.0	0.0876	-2.435	11.42
3	200.0	0.0768	-2.567	13.02
4	300.0	0.0673	-2.699	14.86
5	400.0	0.0590	-2.830	16.95
6	500.0	0.0517	-2.962	19.34
7	700.0	0.0397	-3.226	25.19
8	900.0	0.0305	-3.490	32.79
9	1100.0	0.0234	-3.755	42.74
10	回			

a) Make appropriate plots to determine if the reaction is zero, first or second order with respect to $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ and include original copies of all 3 plots (computer-generated preferred or use graph paper). Do NOT show all 3 plots on one set of axes - if you do this, it makes it impossible to tell which graph is linear. Use a regression line (straight line) for the linear graph and a "connect-thepoints" curve for any non-linear graphs. Make sure the axes are appropriately labeled. (9 pts)

b) Based on your graphs, what is the order of the reaction with respect to $\mathrm{SO}_{2} \mathrm{Cl}_{2}$? (1 pt) $1^{\text {st }}$ order (Tfis plot is the most linear)
c) What is the value of k based on the graph showing the correct order of $\mathrm{SO}_{2} \mathrm{Cl}_{2}$? (Include units for k !) (1 pt)
$\mathrm{k}=$-slope $=1.32 \times 10^{-3} \mathrm{~s}^{-1}$

