Name:
Diebolt Spring '05
Class time:

Quiz 2. Take Home. Due Feb 23.
 No quizzes accepted after 5:00 p.m. on Feb 23.
 Attach work and circle your answers!

1. A mixture of $1.79 \mathrm{~g} \mathrm{O}_{2}$ and $0.840 \mathrm{~g} \mathrm{~N} \mathrm{~N}_{2} \mathrm{O}$ is placed in a 5.00 L container at $50^{\circ} \mathrm{C}$. After equilibrium is established, there is $0.989{\mathrm{~g} \text { of } \mathrm{NO}_{2} \text {. (a) What are the equilibrium }}_{\text {. }}$ concentrations of $\mathrm{O}_{2}, \mathrm{~N}_{2} \mathrm{O}$ and NO_{2} ? (b) Calculate K_{c} for this reaction. (c) Calculate K_{p} at $50^{\circ} \mathrm{C}$. (8 pts)

$$
2 \mathrm{~N}_{2} \mathrm{O}(g)+3 \mathrm{O}_{2}(g) \rightleftharpoons 4 \mathrm{NO}_{2}(g)
$$

2. The gas arsine, AsH_{3}, decomposes by the following reaction:

$$
2 \mathrm{AsH}_{3}(g) \rightleftharpoons 2 \mathrm{As}(s)+3 \mathrm{H}_{2}(g)
$$

In an experiment at a certain temperature, AsH_{3} gas is placed in a flask at a pressure of 0.465 atm . After equilibrium has been established, the total pressure of the gases (for AsH_{3} and H_{2} taken together) is 0.579 atm . (a) What is the partial pressure of each gas at equilibrium? (b) Calculate the value of K_{p} for this reaction. (5 pts)
3. Given the equations

$$
\begin{array}{ll}
6 \mathrm{CH}_{4}(g) \rightleftharpoons 3 \mathrm{C}_{2} \mathrm{H}_{6}(g)+3 \mathrm{H}_{2}(g) & \mathrm{K}_{\mathrm{c}}=8.6 \times 10^{-37} \\
\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(g) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(g)+\mathrm{H}_{2}(g) & \mathrm{K}_{\mathrm{c}}=2.8 \times 10^{-21}
\end{array}
$$

Calculate the value of K_{c} for: $\quad 2 \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ Make sure to show your work! (4 pt)
4. A mixture of $0.500 \mathrm{~atm} \mathrm{H}_{2}$ and $0.500 \mathrm{~atm} \mathrm{CO}_{2}$ is placed in a container and undergoes the following reaction:

$$
\mathrm{H}_{2}(g)+\mathrm{CO}_{2}(g) \rightleftharpoons \mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(g) \quad \mathrm{K}_{\mathrm{p}}=0.771
$$

Calculate the equilibrium partial pressures of each of the four gases. (5 pts)
5. The value of K_{c} for the following reaction is 3.17 at 300 K .

$$
\mathrm{XeF}_{2}(g)+\mathrm{F}_{2}(g) \rightleftharpoons \mathrm{XeF}_{4}(g)
$$

Suppose 0.525 moles of XeF_{2} and 1.12 moles of F_{2} are placed in a 2.50 L vessel. What are the equilibrium concentrations of $\mathrm{XeF}_{2}, \mathrm{~F}_{2}$, and XeF_{4} ? (8 pts)

