1. A mixture of $1.79 \mathrm{~g} \mathrm{O}_{2}$ and $0.840 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}$ is placed in a 5.00 L container at $50{ }^{\circ} \mathrm{C}$. After equilibrium is established, there is 0.989 g of NO_{2}. (a) What are the equilibrium concentrations of $\mathrm{O}_{2}, \mathrm{~N}_{2} \mathrm{O}$ and NO_{2} ? (b) Calculate K_{c}. (c) Calculate K_{p} at $50^{\circ} \mathrm{C}$. (8 pts)

$$
2 \mathrm{~N}_{2} \mathrm{O}(g)+3 \mathrm{O}_{2}(g) \rightleftharpoons 4 \mathrm{NO}_{2}(g)
$$

initial: $\left[\mathrm{N}_{2} \mathrm{O}\right]=\left(\frac{0.840 \mathrm{~g}}{5.00 \mathrm{~L}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}}{\left.44.0 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}\right)=3.82 \times 10^{-3} \mathrm{M} ;\left[\mathrm{O}_{2}\right]=\left(\frac{1.79 \mathrm{~g}}{5.00 \mathrm{~L}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{O}_{2}}{32.0 \mathrm{~g} \mathrm{O}_{2}}\right)=1.12 \times 10^{-2} \mathrm{M} .40}\right.$
equilibrium: $\left[\mathrm{NO}_{2}\right]=\left(\frac{0.989 \mathrm{~g}}{5.00 \mathrm{~L}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{NO}_{2}}{46.0 \mathrm{~g} \mathrm{NO}_{2}}\right)=4.30 \times 10^{-3} \mathrm{M}$

	$\left[\mathrm{N}_{2} \mathrm{O}\right]$	$\left[\mathrm{O}_{2}\right]$	$\left[\mathrm{NO}_{2}\right]$
I, M	3.82×10^{-3}	1.12×10^{-2}	0
C	$-2 x$	$-3 x$	$4 x$
E, M	$3.82 \times 10^{-3}-2 x$	$1.12 \times 10^{-2}-3 x$	$4 x=4.30 \times 10^{-3}$

$$
4 x=4.30 \times 10^{-3} \quad \Rightarrow \quad x=1.08 \times 10^{-3}
$$

Eq concentrations: $\left[\mathrm{N}_{2} \mathrm{O}\right]=3.82 \times 10^{-3}-2\left(1.08 \times 10^{-3}\right)=1.66 \times 10^{-3} \mathcal{M} \mathcal{N}_{2} \mathrm{O}$
$\left[\mathrm{O}_{2}\right]=1.12 \times 10^{-2}-3\left(1.08 \times 10^{-3}\right)=8.0 \times 10^{-3} \mathcal{M} O_{2}$ (2 sig figs due to sigfig subtraction rule)
$\left[\mathrm{NO}_{2}\right]=4.30 \times 10^{-3} \mathcal{M} \mathcal{N} \mathrm{NO}_{2}$
b) $\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{NO}_{2}\right]^{4}}{\left[\mathrm{~N}_{2} \mathrm{O}\right]^{2}\left[\mathrm{O}_{2}\right]^{3}}=\frac{\left[4.30 \times 10^{-3}\right]^{4}}{\left[1.66 \times 10^{-3}\right]^{2}\left[8.0 \times 10^{-3}\right]^{3}}=2.4 \times 10^{2}$
c) $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{\Delta \mathrm{n}} \quad \Delta \mathrm{n}=4-5=-1 \quad \mathrm{~K}_{\mathrm{p}}=2.4 \times 10^{2}(0.0821 \times 323)^{-1}=9.1$
2. The gas arsine, AsH_{3}, decomposes by the following reaction:

$$
2 \mathrm{AsH}_{3}(g) \rightleftharpoons 2 \mathrm{As}(s)+3 \mathrm{H}_{2}(g)
$$

In an experiment at a certain temperature, AsH_{3} gas is placed in a flask at a pressure of 0.465 atm . After equilibrium has been established, the total pressure of the gases (for AsH_{3} and H_{2} taken together) is 0.579 atm. (a) What is the partial pressure of each gas at equilibrium? (b) Calculate the value of K_{p} for this reaction. (5 pts)

$\mathrm{AsH}_{3(g)}$	$\mathrm{AS}(s)$	$\mathrm{H}_{2(g)}$
0.465		0
-2 x		+3 x
$0.465-2 \mathrm{x}$		3 x

Total $P=P_{H_{2}}+P_{\mathrm{AsH}_{3}}$

$$
\begin{gathered}
0.579=0.465-2 x+3 x \\
x=0.114
\end{gathered}
$$

a) $\quad \mathrm{P} \mathrm{AsH}_{3}=0.465-2(0.114)=0.237 \mathrm{~atm} \quad \mathrm{PH}_{2}=3 \mathrm{x}=3(0.114)=0.342 \mathrm{~atm}$
b) $\quad \mathrm{K}_{\mathrm{p}}=\frac{P_{H_{2}}{ }^{3}}{P_{A s H_{3}}{ }^{2}}=\frac{(0.342)^{3}}{(0.237)^{2}}=0.712$
3. Given the equations

$$
\begin{array}{ll}
6 \mathrm{CH}_{4}(g) \rightleftharpoons 3 \mathrm{C}_{2} \mathrm{H}_{6}(g)+3 \mathrm{H}_{2}(g) & \mathrm{K}_{\mathrm{c}}=8.6 \times 10^{-37} \\
\mathrm{CH}_{4}(g)+\mathrm{H}_{2} \mathrm{O}(g) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(g)+\mathrm{H}_{2}(g) & \mathrm{K}_{\mathrm{c}}=2.8 \times 10^{-21}
\end{array}
$$

Calculate the value of K_{c} for: $\quad 2 \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
Make sure to show your work! (4 pt)
Divide the first equation by $3 \Rightarrow$ take K to the $1 / 3$ power:

$$
2 \mathrm{CH}_{4}(g) \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{6}(g)+\mathrm{H}_{2}(g) \quad \mathrm{K}_{\mathrm{c}}=\left(8.6 \times 10^{-37}\right)^{1 / 3}=9.51 \times 10^{-13}
$$

Reverse \& multiply the second equation by $2 \Rightarrow$ invert K and square K :

$$
2 \mathrm{CH}_{3} \mathrm{OH}(g)+2 \mathrm{H}_{2}(g) \rightleftharpoons 2 \mathrm{CH}_{4}(g)+2 \mathrm{H}_{2} \mathrm{O}(g) \quad \mathrm{K}_{\mathrm{c}}=\left\lvert\, \frac{1}{2!.8 \times 10^{-21}} \grave{2}^{2}=1.28 \times 10^{41}\right.
$$

Add the two equations \Rightarrow multiply K values

$$
2 \mathrm{CH}_{3} \mathrm{OH}(g)+\mathrm{H}_{2}(g) \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{6}(g)+2 \mathrm{H}_{2} \mathrm{O}(g) \quad \mathrm{K}_{\mathrm{c}}=\left(9.51 \times 10^{-13}\right)\left(1.28 \times 10^{41}\right)=1.2 \times 10^{2 g}
$$

4. A mixture of $0.500 \mathrm{~atm} \mathrm{H}_{2}$ and $0.500 \mathrm{~atm} \mathrm{CO}_{2}$ is placed in a container and undergoes the following reaction:

$$
\mathrm{H}_{2}(g)+\mathrm{CO}_{2}(g) \rightleftharpoons \mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(g) \quad \mathrm{K}_{\mathrm{p}}=0.771
$$

Calculate the equilibrium partial pressures of each of the four gases. (5 pts)

	H_{2}	CO_{2}	CO	$\mathrm{H}_{2} \mathrm{O}$
$\mathrm{I}(\mathrm{atm})$	0.500	0.500	0	0
C	-x	-x	+x	+x
$\mathrm{E}(\mathrm{atm})$	$0.500-\mathrm{x}$	$0.500-\mathrm{x}$	x	x

$$
\mathrm{K}_{\mathrm{p}}=\frac{P_{\mathrm{H}_{2} O} P_{\mathrm{Co}}}{P_{\mathrm{H}_{2}} P_{C O_{2}}} \quad 0.771=\frac{x \cdot x}{(0.500-x)(0.500-x)}=\frac{x^{2}}{(0.500-x)^{2}}
$$

$$
0.878=\frac{x}{0.500-x} \quad \Rightarrow \quad 0.878(0.500-\mathrm{x})=\mathrm{x}
$$

$$
0.439-0.878 x=x
$$

$$
0.439=1.878 x
$$

$$
x=0.439 / 1.878 \quad \Rightarrow \quad x=0.234
$$

Equilibrium concentrations: $\mathbf{P}_{\mathrm{CO}}=\mathbf{P}_{\mathrm{H}_{2} \mathrm{O}}=0.234$ atm

$$
\mathbf{P}_{\mathrm{CO}_{2}}=\mathbf{P}_{\mathbf{H}_{2}}=0.500-0.234=0.266 \mathrm{att}
$$

5. The value of K_{c} for the following reaction is 3.17 at 300 K .

$$
\mathrm{XeF}_{2}(g)+\mathrm{F}_{2}(g) \rightleftharpoons \mathrm{XeF}_{4}(g)
$$

Suppose 0.525 moles of XeF_{2} and 1.12 moles of F_{2} are placed in a 2.50 L vessel. What are the equilibrium concentrations of $\mathrm{XeF}_{2}, \mathrm{~F}_{2}$, and XeF_{4} ? (8 pts)

Initial: $\left[\mathrm{XeF}_{2}\right]=\frac{0.525 \text { moles }}{2.50 \mathrm{~L}}=0.210 \mathrm{M}$
$\left[F_{2}\right]=\frac{1.12 \text { moles }}{2.50 \mathrm{~L}}=0.448 \mathrm{M}$

	$\left[\mathrm{XeF}_{2}\right]$	$\left[\mathrm{F}_{2}\right]$	$\left[\mathrm{XeF}_{4}\right]$
I,	0.210	0.448	0
C	-x	-x	+x
E	$0.210-\mathrm{x}$	$0.448-\mathrm{x}$	x

$\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{XeF}_{4}\right]}{\left[\mathrm{XeF}_{2}\right]\left[\mathrm{F}_{2}\right]}$
3.17 $=\frac{x}{(0.210-x)(0.448-x)}$
$3.17(0.210-x)(0.448-x)=x$
$3.17\left[0.09408-0.658 x+x^{2}\right]=x$
$0.298-2.086 x+3.17 x^{2}=x$
$3.17 x^{2}-3.086 x+0.298=0$
$x=\frac{+3.086 \pm \sqrt{(3.086)^{2}-4(3.17)(0.298)}}{2(3.17)}=\frac{+3.086 \pm 2.397}{6.34}$
$x=0.865$ or 0.109 so $\mathbf{x}=\mathbf{0 . 1 0 9} \mathbf{M}$; \mathbf{x} can't be 0.865 or we get (-) eq concentrations
Equilibrium concentrations:
$\left[\mathrm{XeF}_{2}\right]=0.210-0.109=0.101 \mathcal{M} X e \mathcal{F}_{2}$
$\left[F_{2}\right]=0.448-0.109=0.339 \mathcal{M ~ F}_{2}$
$\left[\mathrm{XeF}_{4}\right]=0.109 \mathcal{M ~ X e ~}_{4}$

