THERMODYNAMICS PROBLEMS

1. Calculate $\Delta \mathrm{H}_{r x n}^{\circ}$ for the following reaction at $25^{\circ} \mathrm{C}$.
$4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \rightarrow 4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)$
$\Delta \mathrm{H}_{f}^{\circ}[\mathrm{NO}(\mathrm{g})]=90.4 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \quad \Delta \mathrm{H}_{f}^{\circ}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\right]=-241.8 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \quad \Delta \mathrm{H}_{f}^{+}\left[\mathrm{NH}_{3}(\mathrm{~g})\right]=-46.3 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$
$\Delta \mathrm{H}_{r x m}^{\circ}=(4)\left(90.4 \frac{\mathrm{~kJ}}{\mathrm{~mol}}\right)+(6)\left(-241.8 \frac{\mathrm{~kJ}}{\mathrm{~mol}}\right)-\left[(4)\left(-46.3 \frac{\mathrm{~kJ}}{\mathrm{~mol}}\right)+(5)(0)\right]=-904.0 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$
If you include moles as units for your coefficients: $\Delta H_{r a n}^{\circ}=-904.0 \mathrm{~kJ}$
2. Calculate the entropy change for $2 \mathrm{Na}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NaCl}(\mathrm{s})$
S° values: $\mathrm{Na}(\mathrm{s})=51.05 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}, \mathrm{Cl}_{2}(\mathrm{~g})=223.0 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}, \mathrm{NaCl}(\mathrm{s})=72.38 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$

$$
\Delta \mathrm{S}_{r \mathrm{rm}}^{\circ}=(2)\left(72.38 \frac{\mathrm{~J}}{\mathrm{~K} \cdot \mathrm{~mol}}\right)-(2)\left(51.05 \frac{\mathrm{~J}}{\mathrm{~K} \cdot \mathrm{~mol}}\right)-(1)\left(223.0 \frac{\mathrm{~J}}{\mathrm{~K} \cdot \mathrm{~mol}}\right)=-180.3 \frac{\mathrm{~J}}{\mathrm{~K} \cdot \mathrm{~mol}}
$$

If you include moles as units for your coefficients: $\Delta S_{r x n}^{\circ}=-180.3 \frac{\mathrm{~J}}{\mathrm{~K}}$
3. a) Calculate $\Delta \mathrm{G}$, given $\Delta \mathrm{H}=-227 \mathrm{~kJ}, \Delta \mathrm{~S}=-309 \mathrm{~J} / \mathrm{K}, \mathrm{T}=1450 \mathrm{~K}$.

$$
\Delta G=\Delta H-T \Delta S \quad \Delta G=-227 k J-(1450 K)\left(\frac{-309 J}{K}\right)\left(\frac{1 k J}{1000 J}\right)=+221 \mathrm{~kJ}
$$

b) Is this process spontaneous at this temperature? If not, calculate the temperature (in ${ }^{\circ} \mathrm{C}$) at which this reaction becomes spontaneous.

No, it is not spontaneous at 1450 K (ΔG is +)
Set $\Delta \mathrm{G}=0: \quad 0=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S} \Rightarrow \mathrm{T}=\frac{\Delta H}{\Delta S}$
$\mathrm{T}=\frac{-227 \mathrm{KJ}}{\left(-309 \frac{\mathrm{~J}}{\mathrm{~K}}\right)\left(\frac{1 \mathrm{~kJ}}{1000 \mathrm{~J}}\right)}=735 \mathrm{~K}-273=462^{\circ} \mathrm{C} \Leftarrow \mathrm{T}$ at equilibrium
ΔH and ΔS are both negative, so it is spontaneous at temperatures below $462{ }^{\circ} \mathrm{C}$. Spontaneous at $\mathrm{T}<462^{\circ} \mathrm{C}$
3. $\Delta \mathrm{G}_{\mathrm{t}}{ }^{\circ}$ in $\mathrm{kJ} / \mathrm{mol}$:
$\mathrm{CaO}(\mathrm{s}) \quad-604.2 \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s}) \quad-896.8 \quad \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad-228.6 \quad \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \quad$-237.2
Calculate $\Delta \mathrm{G}^{\circ}$ for these reactions and predict whether they will be spontaneous or not.
a) $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \leftrightarrows 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
$\Delta \mathrm{G}^{\circ}=-(2)\left(-228.6 \frac{\mathrm{~kJ}}{\mathrm{~mol}}\right)=457.2 \frac{\mathrm{~kJ}}{\mathrm{~mol}}($ or 457.2 kJ$)+\Delta \mathrm{G}^{\circ}$ so it is not spontaneous
b) $\mathrm{CaO}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrows \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})$

$$
\Delta G^{\circ}=(1)\left(-896.8 \frac{\mathrm{~kJ}}{\mathrm{~mol}}\right)-(1)\left(-604.2 \frac{\mathrm{~kJ}}{\mathrm{~mol}}\right)-(1)\left(-237.2 \frac{\mathrm{~kJ}}{\mathrm{~mol}}\right)=-55.4 \frac{\mathrm{~kJ}}{\mathrm{~mol}}(\text { or }-55.4 \mathrm{~kJ})
$$

b is spontaneous under standard state conditions ($\Delta \mathrm{G}^{\circ}$ is -)
4. ΔG^{0} is $-24.7 \mathrm{~kJ} / \mathrm{mol}$ for the formation of methanol.

$$
\mathrm{C}(\mathrm{~s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrows \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})
$$

Calculate the equilibrium constant, K , at $25^{\circ} \mathrm{C}$ for this reaction.
$\mathrm{K}=\mathrm{e}^{\frac{-\Delta G}{R T}}=\mathrm{e}^{\frac{-(-24.7 \mathrm{~kJ})}{\left(8.314 \frac{\mathrm{~J}}{\mathrm{ml} \cdot \mathrm{mol}}\right)\left(\frac{\mathrm{kJJ}}{1000 J}\right)(298 \mathrm{~K})}}=\mathrm{e}^{0.969}=2.14 \times 10^{4}$
5. a) At $25^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{a}}$ for acetic acid is 1.8×10^{-5}. Predict the sign of $\Delta \mathrm{G}^{\circ}$ at $25^{\circ} \mathrm{C}$ for $\mathrm{CH}_{3} \mathrm{COOH}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{CH}_{3} \mathrm{COO}^{-}(a q)$. Calculate $\Delta \mathrm{G}^{\circ}$ at $25^{\circ} \mathrm{C}$.
$\mathrm{K}<1$ so $\Delta \mathrm{G}^{\circ}$ will be +

$$
\Delta G^{\circ}=-R T \ln \mathrm{~K}=-\left(8.314 \frac{\mathrm{~J}}{\mathrm{~K} \cdot \mathrm{~mol}}\right)(298 \mathrm{~K})\left(\ln 1.8 \times 10^{-5}\right)=2.7 \times 10^{4} \frac{\mathrm{~J}}{\mathrm{~mol}} \text { or } 27 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
$$

b) Calculate $\Delta \mathrm{G}$ at $25^{\circ} \mathrm{C}$ for the acetic acid equilibrium reaction, when $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.020 \mathrm{M}$, $\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]=0.010 \mathrm{M}$, and $\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=0.10 \mathrm{M}$. (Use $\Delta \mathrm{G}^{\circ}$ from part b.)

$$
\begin{aligned}
& \Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}+\mathrm{RT} \ln \mathrm{Q} \quad \mathrm{Q}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]} \\
& \Delta \mathrm{G}=27 \frac{\mathrm{~kJ}}{\mathrm{~mol}}+\left(8.314 \times 10^{-3} \frac{\mathrm{~kJ}}{\mathrm{~K} \cdot \mathrm{~mol}}\right)(298 \mathrm{~K})\left(\ln \frac{[0.020][0.010]}{[0.10]}\right) \\
& \Delta \mathrm{G}=27 \frac{\mathrm{~kJ}}{\mathrm{~mol}}+\left(2.478 \frac{\mathrm{~kJ}}{\mathrm{~mol}}\right)\left(\ln 2.0 \times 10^{-3}\right)=27 \frac{\mathrm{~kJ}}{\mathrm{~mol}}+\left(2.478 \frac{\mathrm{~kJ}}{\mathrm{~mol}}\right)(-6.215) \\
& \Delta \mathrm{G}=27 \frac{\mathrm{~kJ}}{\mathrm{~mol}}-15.4 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \quad \Delta \mathrm{G}=12 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \text { or } 1.2 \times 10^{4} \frac{\mathrm{~J}}{\mathrm{~mol}} \\
& \Rightarrow \text { Since } \mathrm{Q}=2.0 \times 10^{-3}>\mathrm{K}=1.8 \times 10^{-5}, \text { the reaction shifts left } \\
& \Rightarrow \text { This is consistent with the }+\Delta \mathrm{G} \text { value which tells us the reaction is not } \\
& \text { spontaneous in the forward direction. }
\end{aligned}
$$

6. $\Delta \mathrm{G}^{\circ}$ for the reaction $\mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \leftrightarrows 2 \mathrm{HI}(g)$ is $2.60 \mathrm{~kJ} / \mathrm{mol}$ at $25^{\circ} \mathrm{C}$.

In one experiment, the initial pressures are $\mathrm{P}_{\mathrm{H}_{2}}=4.3 \mathrm{~atm}, \mathrm{P}_{\mathrm{I}_{2}}=0.34 \mathrm{~atm}$, and $\mathrm{P}_{\mathrm{HI}}=0.23$ atm. Calculate ΔG and predict the direction that this reaction will proceed.

$$
\begin{gathered}
\Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}+\mathrm{RT} \ln \mathrm{Q} \quad Q=\frac{P_{H \mathrm{H}}^{2}}{P_{\mathrm{H}_{2}} P_{l_{2}}} \\
\Delta \mathrm{G}=2.60 \frac{\mathrm{~kJ}}{\mathrm{~mol}}+\left(8.314 \times 10^{-3} \frac{\mathrm{~kJ}}{\mathrm{~K} \cdot \mathrm{~mol}}\right)(298 \mathrm{~K})\left(\ln \frac{(0.23)^{2}}{(4.3)(0.34)}\right) \\
\Delta \mathrm{G}=2.60 \frac{\mathrm{~kJ}}{\mathrm{~mol}}+\left(2.478 \frac{\mathrm{~kJ}}{\mathrm{~mol}}\right)(\ln 0.0362)=2.60 \frac{\mathrm{~kJ}}{\mathrm{~mol}}+-8.22 \frac{\mathrm{~kJ}}{\mathrm{~mol}}=-5.62 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
\end{gathered}
$$

Since ΔG is negative it will be spontaneous in the forward direction

