THERMODYNAMICS PROBLEMS

1. Calculate $\Delta H_{r,m}^{\circ}$ for the following reaction at 25 °C. $4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$ $\Delta H_f^{\circ}[NO(g)] = 90.4 \frac{kJ}{mol} \Delta H_f^{\circ}[H_2O(g)] = -241.8 \frac{kJ}{mol} \Delta H_f^{\circ}[NH_3(g)] = -46.3 \frac{kJ}{mol}$

2. Calculate the entropy change for 2Na(s) + Cl₂(g) → 2NaCl(s) S° values: Na(s) = 51.05 J/mol•K, Cl₂(g) = 223.0 J/mol•K, NaCl(s) = 72.38 J/mol•K

3. a) Calculate Δ G, given Δ H = -227 kJ, Δ S = -309 J/K, T = 1450 K.

b) Is this process spontaneous at this temperature? If not, calculate the temperature (in °C) at which this reaction becomes spontaneous.

3. ΔG_f° in kJ/mol:

CaO(s) -604.2 Ca(OH)₂(s) -896.8 $H_2O(g)$ -228.6 $H_2O(I)$ -237.2

Calculate ΔG° for these reactions and predict whether they will be spontaneous or not.

a) $2H_2O(g) \leftrightarrows 2H_2(g) + O_2(g)$

b) $CaO(s) + H_2O(I) \leftrightarrows Ca(OH)_2(s)$

4. ΔG° is -24.7 kJ/mol for the formation of methanol.

 $C(s) + \frac{1}{2}O_2(g) + 2H_2(g) \leftrightarrows CH_3OH(g)$

Calculate the equilibrium constant, K, at 25 °C for this reaction.

5. a) At 25 °C, K_a for acetic acid is 1.8×10^{-5} . Predict the sign of ΔG° at 25 °C for CH₃COOH(*aq*) + H₂O(*l*) \leftrightarrows H₃O⁺(*aq*) + CH₃COO⁻(*aq*). Calculate ΔG° at 25 °C.

b) Calculate ΔG at 25 °C for the acetic acid equilibrium reaction, when $[H_3O^+] = 0.020 \text{ M}$, $[CH_3COO^-] = 0.010 \text{ M}$, and $[CH_3COOH] = 0.10 \text{ M}$. (Use ΔG° from part a.)

∆G° for the reaction H₂(g) + I₂(g) ⇒ 2 HI(g) is 2.60 kJ/mol at 25°C.
In one experiment, the initial pressures are P_{H2} = 4.3 atm, P_{I2} = 0.34 atm, and P_{HI} = 0.23 atm. Calculate ∆G and predict the direction that this reaction will proceed.