THERMODYNAMICS PROBLEMS

1. Calculate $\Delta \mathrm{H}_{r x n}^{\circ}$ for the following reaction at $25^{\circ} \mathrm{C}$.

$$
4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \rightarrow 4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)
$$

$$
\Delta \mathrm{H}_{f}^{\circ}[\mathrm{NO}(g)]=90.4 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \Delta \mathrm{H}_{f}^{\circ}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})\right]=-241.8 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \quad \Delta \mathrm{H}_{f}^{\circ}\left[\mathrm{NH}_{3}(\mathrm{~g})\right]=-46.3 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
$$

2. Calculate the entropy change for $2 \mathrm{Na}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NaCl}(\mathrm{s})$ S° values: $\mathrm{Na}(\mathrm{s})=51.05 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}, \mathrm{Cl}_{2}(\mathrm{~g})=223.0 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}, \mathrm{NaCl}(\mathrm{s})=72.38 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$
3. a) Calculate $\Delta \mathrm{G}$, given $\Delta \mathrm{H}=-227 \mathrm{~kJ}, \Delta \mathrm{~S}=-309 \mathrm{~J} / \mathrm{K}, \mathrm{T}=1450 \mathrm{~K}$.
b) Is this process spontaneous at this temperature? If not, calculate the temperature (in ${ }^{\circ} \mathrm{C}$) at which this reaction becomes spontaneous.
4. $\Delta \mathrm{G}_{\mathrm{t}}{ }^{0}$ in $\mathrm{kJ} / \mathrm{mol}$:
$\mathrm{CaO}(\mathrm{s}) \quad-604.2 \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s}) \quad-896.8 \quad \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad-228.6 \quad \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad$-237.2
Calculate ΔG^{0} for these reactions and predict whether they will be spontaneous or not.
a) $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \leftrightarrows 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
b) $\mathrm{CaO}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrows \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})$
5. ΔG^{0} is $-24.7 \mathrm{~kJ} / \mathrm{mol}$ for the formation of methanol.
$\mathrm{C}(\mathrm{s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrows \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
Calculate the equilibrium constant, K , at $25^{\circ} \mathrm{C}$ for this reaction.
6. a) At $25^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{a}}$ for acetic acid is 1.8×10^{-5}. Predict the sign of $\Delta \mathrm{G}^{\circ}$ at $25^{\circ} \mathrm{C}$ for $\mathrm{CH}_{3} \mathrm{COOH}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{CH}_{3} \mathrm{COO}^{-}(a q)$. Calculate $\Delta \mathrm{G}^{\circ}$ at $25^{\circ} \mathrm{C}$.
b) Calculate $\Delta \mathrm{G}$ at $25^{\circ} \mathrm{C}$ for the acetic acid equilibrium reaction, when $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.020 \mathrm{M}$, $\left[\mathrm{CH}_{3} \mathrm{COO}^{\circ}\right]=0.010 \mathrm{M}$, and $\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=0.10 \mathrm{M}$. (Use $\Delta \mathrm{G}^{\circ}$ from part a.)
7. $\Delta \mathrm{G}^{\circ}$ for the reaction $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{HI}(\mathrm{g})$ is $2.60 \mathrm{~kJ} / \mathrm{mol}$ at $25^{\circ} \mathrm{C}$. In one experiment, the initial pressures are $\mathrm{P}_{\mathrm{H}_{2}}=4.3 \mathrm{~atm}, \mathrm{P}_{\mathrm{I}_{2}}=0.34 \mathrm{~atm}$, and $\mathrm{P}_{\mathrm{HI}}=0.23$ atm. Calculate $\Delta \mathrm{G}$ and predict the direction that this reaction will proceed.
