WEAK ACID, WEAK BASE AND SALT PROBLEMS KEY

1. a) Calculate the equilibrium concentrations of H₃O⁺, CIO[−] and HCIO in a 0.50 M solution of hypochlorous acid, HCIO(aq). b) What is the pH of this solution? HCIO is WA!

WA hydrolysis: HClO(aq) + H₂O(l) \Rightarrow H₃O⁺(aq) + ClO⁻(aq) K_a = 3.5×10⁻⁸

	HClO(aq)	+ H ₂ O(<i>l</i>) ±	\Rightarrow H ₃ O ⁺ (aq) -	+ CIO ⁻ (<i>aq</i>)
I	0.50		0	0
С	-X		+x	+X
E	0.50 - x		X	Х

$$K_{a} = \frac{[H_{3}O^{+}][CIO^{-}]}{[HCIO]} \qquad 3.5 \times 10^{-8} = \frac{x^{2}}{0.50 - x}$$

Assume x is much smaller than the initial [HClO] $\Rightarrow 0.50 - x = 0.50$

$$\frac{x^2}{0.50} = 3.5 \times 10^{-8} \qquad x^2 = 0.50(3.5 \times 10^{-8}) = 1.75 \times 10^{-8} \qquad x = \sqrt{1.75 \times 10^{-8}} = 1.32 \times 10^{-4}$$

- check assumption: $\frac{x}{[HA]_{initial}} \times 100 = \frac{1.3 \times 10^{-4}}{0.50} \times 100 = 0.026$ % is less than 5% \checkmark
- a) Eq []'s: $[H_3O^+] = [CIO^-] = \frac{1.3 \times 10^{-4} \text{ M}}{3}; [HCIO] = 0.50 1.3 \times 10^{-4} = \frac{0.50 \text{ M}}{3}$
- b) pH = -log $[H_3O^+]$ pH = -log 1.3×10^{-4} pH= 3.89
- 2. a) Find the K_a of a 1.25 M solution of nitrous acid, HNO₂(aq). The pH of this solution is measured to be 1.62. HNO₂ is WA.

WA Hydrolysis:
$$HNO_2 + H_2O = H_3O^+ + NO_2^-$$

	HNO ₂ +	· H₂O ±	→ H ₃ O ⁺	+ NO2 ⁻
_	1.25		0	0
С	-X		+X	+X
E	1.25 - x		x	X

pH = 1.62 $[H_3O^+] = 10^{-pH}$ $[H_3O^+] = 10^{-1.62} = 2.4 \times 10^{-2} \text{ M}; \text{ thus, } x = 2.4 \times 10^{-2} \text{ M}$ Eq. [1's: [HNO_1] = 1.25 = 2.4 \times 10^{-2} - 1.23 \text{ M}; [H_2O^+] = [NO_2^-] = 2.4 \times 10^{-2} \text{ M}

$$K_{a} = \frac{[H_{3}O^{+}][NO_{2}^{-}]}{[HNO_{2}]} \qquad \qquad K_{a} = \frac{x^{2}}{1.25 - x} = \frac{(2.4 \times 10^{-2})^{2}}{1.23} = \frac{4.7 \times 10^{-4}}{1.23}$$

- Note: don't ignore -x since we know x (x = 10^{-pH}); we only assume x is small to avoid solving a quadratic (or polynomical) formula!
- b) What is the %dissociation for this HNO_{2(aq)} solution?

%dissociation = $\frac{[H_3O^+]}{[HA]_{initial}} \times 100$ %dissociation = $\frac{2.4 \times 10^{-2}}{1.25} \times 100 = 1.9\%$

3. A 0.200 M solution of a weak acid is 9.4% dissociated. Use this information to calculate $[H_3O^+]$, $[A^-]$, [HA] and K_a .

$$HA(aq) + H_2O(I) \implies H_3O^+(aq) + A^-(aq)$$

$$\frac{|HA(aq) + H_2O(l) = H_3O'(aq) + A'(aq)}{0}$$

$$\frac{|I|}{1 - 0.200} = 0$$

$$\frac{0}{0}$$

$$\frac{1}{1 - 0.200 + x} = \frac{1}{x}$$

$$\frac{1}{x} = \frac{1}{x} = \frac$$

• Note we don't ignore -x since we find x from the pOH; we only assume x is small to avoid solving a quadratic (or polynomical) formula!

6. Is KF an acidic, basic or neutral salt? Write the hydrolysis reaction and calculate the pH of a 0.10 M KF solution. K_a (HF) = 3.5×10^{-4}

 $KF(aq) \rightarrow K^+ + F^ F^-$ will react with water: **N B**

 $F^- + H_2O(I) \leftrightarrows HF + OH^-$

 I
 0.10
 0
 0

 C
 -x
 +x
 +x

 E
 0.10 - x
 x
 x

WB hydrolysis: F^- + $H_2O(I) = HF + OH^-$

1:1 ratio so $[F^-] = [KF] = 0.10 \text{ M}$ K_a for HF = 3.5×10^{-4}

$$K_{a} \times K_{b} = 1 \times 10^{-14} \qquad K_{b} \text{ for } F^{-} = \frac{1 \times 10^{-14}}{3.5 \times 10^{-4}} = 2.86 \times 10^{-11}$$

$$K_{b} = \frac{[\text{HF}][\text{OH}^{-}]}{[\text{F}^{-}]} \qquad \text{Assume x is small! } 2.86 \times 10^{-11} = \frac{x^{2}}{0.10}$$

$$x^{2} = (2.86 \times 10^{-11})(0.10) \qquad x = \sqrt{(2.86 \times 10^{-11})(0.10)} = 1.69 \times 10^{-6} \qquad x = [\text{OH}^{-}] = \underline{1.69 \times 10^{-6} \text{ M}}$$

$$p\text{OH} = -\log [\text{OH}^{-}] = -\log [1.69 \times 10^{-6}] = 5.77 \qquad \text{pH} = 14 - 5.77 = 8.23 \text{ basic} \checkmark$$

*Note: You must use K_b instead of K_a because F^- acts as a weak base in water; for WB problems remember that $x = [OH^-]$, so -log x gives us pOH not pH!

7. Is NH₄Cl an acidic, basic, or neutral salt? Write the hydrolysis reaction and calculate the pH of a 0.10 M NH₄Cl solution. K_b (NH₃) = 1.8×10⁻⁵

 $NH_4CI \rightarrow NH_4^+ + CI^ NH_4^+$ will react with water: **A N**

WA hydrolysis: $NH_4^+ + H_2O(I) = NH_3 + H_3O^+$

	$NH_4^+ + H_2O(I) \Rightarrow NH_3 + H_3O^+$					
I	0.10		0	0		
С	-x		+X	+X		
Е	0.10 - x		Х	Х		

1:1 ratio so $[NH_4^+] = [NH_4CI] = 0.10 \text{ M}$ K_b for $NH_3 = 1.8 \times 10^{-5}$

$$\begin{split} &\mathsf{K}_{a} = \frac{1 \times 10^{-14}}{\mathsf{K}_{b}} &\mathsf{K}_{a} \text{ for } \mathsf{NH}_{4}^{+} = \frac{1 \times 10^{-14}}{1.8 \times 10^{-5}} = 5.56 \times 10^{-10} \\ &\mathsf{K}_{a} = \frac{[\mathsf{NH}_{3}][\mathsf{H}_{3}\mathsf{O}^{+}]}{[\mathsf{NH}_{4}^{+}]} &\mathsf{Assume x is small!} \quad 5.56 \times 10^{-10} = \frac{x^{2}}{0.10} \\ &\mathsf{x}^{2} = (5.56 \times 10^{-10})(0.10) &\mathsf{x} = \sqrt{5.56 \times 10^{-11}} = 7.46 \times 10^{-6} &\mathsf{x} = [\mathsf{H}_{3}\mathsf{O}^{+}] = \underline{7.46 \times 10^{-6} \ \mathsf{M}} \\ &\mathsf{pH} = -\mathsf{log} \ [\mathsf{H}_{3}\mathsf{O}^{+}] &\mathsf{pH} = -\mathsf{log} \ \underline{7.46 \times 10^{-6}} &\mathsf{pH} = 5.13 \ \mathsf{acidic}\checkmark \end{split}$$

*Note: You must use K_a instead of K_b because NH_4^+ acts as a weak acid in water; for WA problems remember that $x = [H_3O^+]$, so $-\log x$ gives us pH!

Weak Acid, Weak Base and Salt Key