WEAK ACID, WEAK BASE AND SALT PROBLEMS KEY

1. a) Calculate the equilibrium concentrations of $\mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{ClO}^{-}$and HClO in a 0.50 M solution of hypochlorous acid, $\mathrm{HClO}(\mathrm{aq})$. b) What is the pH of this solution? HClO is WA!

WA hydrolysis: $\mathrm{HClO}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{ClO}^{-}(a q) \quad \mathrm{K}_{\mathrm{a}}=3.5 \times 10^{-8}$

	$\mathrm{HClO}(a q)+\mathrm{H}_{2} \mathrm{O}(l)$		\leftrightarrows	$\mathrm{H}_{3} \mathrm{O}^{+}(a q)$
ClO	$(a q)$			
C	0.50		0	0
C	-x		+x	+x
E	$0.50-\mathrm{x}$		x	x

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{ClO}^{-}\right]}{[\mathrm{HCO}]} \quad 3.5 \times 10^{-8}=\frac{x^{2}}{0.50-x}
$$

Assume x is much smaller than the initial $[\mathrm{HClO}] \Rightarrow 0.50-x=0.50$ $\frac{x^{2}}{0.50}=3.5 \times 10^{-8} \quad x^{2}=0.50\left(3.5 \times 10^{-8}\right)=1.75 \times 10^{-8} \quad x=\sqrt{1.75 \times 10^{-8}}=1.32 \times 10^{-4}$

- check assumption: $\frac{x}{[H A]_{\text {ninitial }}} \times 100=\frac{1.3 \times 10^{-4}}{0.50} \times 100=0.026 \%$ is less than $5 \% ~ \checkmark$
a) Eq [$]^{\prime}$ ': $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{ClO}^{-}\right]=\mathbf{1 . 3 \times 1 0 ^ { - 4 }} \mathbf{M} ;[\mathrm{HClO}]=0.50-1.3 \times 10^{-4}=\mathbf{0 . 5 0} \mathbf{~ M}$
b) $\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \quad \mathrm{pH}=-\log 1.3 \times 10^{-4}$
$\mathrm{pH}=3.89$

2. a) Find the K_{a} of a 1.25 M solution of nitrous acid, $\mathrm{HNO}_{2}(\mathrm{aq})$. The pH of this solution is measured to be 1.62. HNO_{2} is WA.

WA Hydrolysis: $\mathrm{HNO}_{2}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{2}^{-}$

	$\mathrm{HNO}_{2}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}$			$+\mathrm{NO}_{2}^{-}$
I	1.25		0	0
C	-x		+x	+x
E	$1.25-\mathrm{x}$		x	x

$\mathrm{pH}=1.62 \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}} \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-1.62}=2.4 \times 10^{-2} \mathrm{M}$; thus, $\mathrm{x}=2.4 \times 10^{-2}$
$\mathrm{Eq}\left[\right.$]'s: $\left[\mathrm{HNO}_{2}\right]=1.25-2.4 \times 10^{-2}=\mathbf{1 . 2 3} \mathbf{~ M} ;\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{NO}_{2}{ }^{-}\right]=\underline{\mathbf{2} .4 \times 10^{-2} \mathbf{~ M}}$

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{NO}_{2}^{-}\right]}{\left[\mathrm{HNO}_{2}\right]} \quad \mathrm{K}_{\mathrm{a}}=\frac{x^{2}}{1.25-x}=\frac{\left(2.4 \times 10^{-2}\right)^{2}}{1.23}=4.7 \times 10^{-4}
$$

- Note: don't ignore $-x$ since we know $x\left(x=10^{-\mathrm{pH}}\right)$; we only assume x is small to avoid solving a quadratic (or polynomical) formula!
b) What is the \%dissociation for this $\mathrm{HNO}_{2(\mathrm{aq})}$ solution?
\%dissociation $=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{[\mathrm{HA}]_{\text {nititial }}} \times 100$ \%dissociation $=\frac{2.4 \times 10^{-2}}{1.25} \times 100=1.9 \%$

3. A 0.200 M solution of a weak acid is 9.4% dissociated. Use this information to calculate $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right],[\mathrm{A}],[\mathrm{HA}]$ and K_{a}.

$$
\mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{A}^{-}(a q)
$$

	$\mathrm{HA}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \underset{\mathrm{H}_{3} \mathrm{O}^{+}(a q)}{ }+\mathrm{A}(a q)$		
I	0.200		0
C	-x		+x
E	$0.200-\mathrm{x}$		x

$$
\text { Eq }[]^{\prime} \mathrm{s}: ~[\mathrm{HA}]=0.200-0.019=\underline{\mathbf{0 . 1 8 1}} \mathbf{~ M} ;\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{A}^{-}\right]=\underline{\mathbf{1} .9} \times \mathbf{1 0 ^ { - 2 } \mathbf { ~ M }}
$$

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}=\frac{x^{2}}{0.200-x}=\frac{(0.019)^{2}}{0.181}=2.0 \times 10^{-3}
$$

4. Calculate the pH of a 0.50 M dimethylamine $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$ solution. $\mathrm{K}_{\mathrm{b}}=5.4 \times 10^{-4}$ $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$ is WB
WB hydrolysis: $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{3}^{+}+\mathrm{OH}^{-}$

	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}$	$+\mathrm{H}_{2} \mathrm{O}$	$\leftrightarrows\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{3}^{+}+\mathrm{OH}^{-}$	
I	0.50		0	0
C	-x		+x	+x
E	$0.50-\mathrm{x}$		x	x

$$
\begin{array}{ll}
\mathrm{K}_{\mathrm{b}}=\frac{\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{3}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}\right]} \quad \text { assume } \mathrm{x} \text { is small! } 5.4 \times 10^{-4}=\frac{x^{2}}{0.50} \\
\mathrm{x}=\sqrt{\left(5.4 \times 10^{-4}\right)(0.50)}=\sqrt{2.7 \times 10^{-4}}=1.64 \times 10^{-2} & \mathrm{x}=\left[\mathrm{OH}^{-}\right]=1.64 \times 10^{-2} \mathrm{M}
\end{array}
$$

$$
\text { check assumption: } \frac{\mathrm{x}}{[\mathrm{~B}]_{\text {initial }}} \times 100=\frac{1.64 \times 10^{-2}}{0.50} \times 100=3.28 \% \text { is less than } 5 \%
$$

$$
\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log 1.64 \times 10^{-2}=1.79 \quad \mathrm{pH}=14-\mathrm{pOH}=14-1.79=\mathbf{1 2 . 2 1}
$$

5. A 0.065 M solution of methylamine, $\mathrm{CH}_{3} \mathrm{NH}_{2}$, has a pH of 11.70 . What is K_{b} for $\mathrm{CH}_{3} \mathrm{NH}_{2}$? WB hydrolysis: $\mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}+\mathrm{OH}^{-} \quad \mathrm{pH}=11.70$

	$\mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons$	$\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$	$+\mathrm{OH}^{-}$
I	0.065		0
C	-x		+x
E	$0.065-\mathrm{x}$		x

$$
\begin{aligned}
& \mathrm{pOH}=14-\mathrm{pH} \quad \mathrm{pOH}=14-11.70=2.30 \\
& {\left[\mathrm{OH}^{-}\right]=10^{-2.30}=5.0 \times 10^{-3} \mathrm{M} ; \text { thus } \mathrm{x}=5.0 \times 10^{-3} \mathrm{M}}
\end{aligned}
$$

Eq []'s: $\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\right]=0.065-0.0050=\underline{\mathbf{0 . 0 6 0} \mathbf{~ M}} ;\left[\mathrm{OH}^{-}\right]=\left[\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}\right]=\underline{\mathbf{5 . 0} \times \mathbf{1 0}^{\mathbf{- 3}} \mathbf{~ M}}$

$$
\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{CH}_{3} \mathrm{NH}_{3}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\right]} \quad \mathrm{K}_{\mathrm{b}}=\frac{\left(5.0 \times 10^{-3}\right)^{2}}{0.060}=4.2 \times 10^{-4}
$$

- Note we don't ignore $-x$ since we find x from the pOH ; we only assume x is small to avoid solving a quadratic (or polynomical) formula!

$$
\begin{aligned}
& \text { \%ionization } \left.=\frac{x}{[H A}\right]_{\text {in }} \times 100 \quad 9.4 \%=\frac{x}{0.200} \times 100 \\
& x=\frac{0.200(9.4)}{100}=0.0188 \quad x=0.019
\end{aligned}
$$

6. Is KF an acidic, basic or neutral salt? Write the hydrolysis reaction and calculate the pH of a 0.10 M KF solution. $\mathrm{K}_{\mathrm{a}}(\mathrm{HF})=3.5 \times 10^{-4}$

$$
\mathrm{KF}(\mathrm{aq}) \rightarrow \mathrm{K}^{+}+\mathrm{F}^{-} \quad \mathrm{F}^{-} \text {will react with water: }
$$

WB hydrolysis: $\mathrm{F}^{-}+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrows \mathrm{HF}+\mathrm{OH}^{-}$

	$\mathrm{F}^{-}+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrows \mathrm{HF}+\mathrm{OH}^{-}$		
I	0.10		0
C	-x		+x
E	$0.10-\mathrm{x}$		x

1:1 ratio so $[F]=[K F]=0.10 \mathrm{M} \quad \mathrm{K}_{\mathrm{a}}$ for $\mathrm{HF}=3.5 \times 10^{-4}$
$K_{a} \times K_{b}=1 \times 10^{-14} \quad K_{b}$ for $F^{-}=\frac{1 \times 10^{-14}}{3.5 \times 10^{-4}}=2.86 \times 10^{-11}$
$\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{HF}\left[\mathrm{OH}^{-}\right]\right.}{\left[\mathrm{F}^{-}\right]} \quad$ Assume x is small! $2.86 \times 10^{-11}=\frac{x^{2}}{0.10}$
$x^{2}=\left(2.86 \times 10^{-11}\right)(0.10) \quad x=\sqrt{\left(2.86 \times 10^{-11}\right)(0.10)}=1.69 \times 10^{-6} \quad x=\left[O H^{-}\right]=\underline{1.69 \times 10^{-6} \mathrm{M}}$
$\mathrm{pOH}=-\log [\mathrm{OH}]=-\log \left[1.69 \times 10^{-6}\right]=5.77 \quad \mathrm{pH}=14-5.77=8.23$ basic \downarrow
${ }^{*}$ Note: You must use K_{b} instead of K_{a} because F^{-}acts as a weak base in water; for WB problems remember that $x=\left[\mathrm{OH}^{-}\right]$, so $-\log x$ gives us pOH not pH !
7. Is $\mathrm{NH}_{4} \mathrm{Cl}$ an acidic, basic, or neutral salt? Write the hydrolysis reaction and calculate the pH of a $0.10 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$ solution. $\mathrm{K}_{\mathrm{b}}\left(\mathrm{NH}_{3}\right)=1.8 \times 10^{-5}$

$$
\mathrm{NH}_{4} \mathrm{Cl} \rightarrow \underset{\mathbf{A}}{\mathrm{NH}_{4}^{+}}+\underset{\mathbf{N}}{\mathrm{Cl}^{-}} \quad \mathrm{NH}_{4}^{+} \text {will react with water: }
$$

WA hydrolysis: $\mathrm{NH}_{4}{ }^{+}+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrows \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}$

	$\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrows \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}$			
I	0.10		0	0
C	-x		+x	+x
E	$0.10-\mathrm{x}$		x	x

$$
\text { 1:1 ratio so }\left[\mathrm{NH}_{4}^{+}\right]=\left[\mathrm{NH}_{4} \mathrm{Cl}\right]=0.10 \mathrm{M} \quad \mathrm{~K}_{\mathrm{b}} \text { for } \mathrm{NH}_{3}=1.8 \times 10^{-5}
$$

$$
\begin{array}{ll}
\mathrm{K}_{\mathrm{a}}=\frac{1 \times 10^{-14}}{\mathrm{~K}_{\mathrm{b}}} & \mathrm{~K}_{\mathrm{a}} \text { for } \mathrm{NH}_{4}^{+}=\frac{1 \times 10^{-14}}{1.8 \times 10^{-5}}=5.56 \times 10^{-10} \\
\mathrm{~K}_{\mathrm{a}}=\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{NH}_{4}{ }^{+}\right]} & \text {Assume } \mathrm{x} \text { is small! } 5.56 \times 10^{-10}=\frac{x^{2}}{0.10} \\
x^{2}=\left(5.56 \times 10^{-10}\right)(0.10) & x=\sqrt{5.56 \times 10^{-11}}=7.46 \times 10^{-6} \quad x=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=7.46 \times 10^{-6} \mathrm{M}
\end{array}
$$

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \quad \mathrm{pH}=-\log \underline{7.46 \times 10^{-6}} \quad \mathrm{pH}=5.13 \text { acidic } \checkmark
$$

*Note: You must use K_{a} instead of K_{b} because $\mathrm{NH}_{4}{ }^{+}$acts as a weak acid in water; for WA problems remember that $x=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$, so $-\log x$ gives us pH !

