COMMON ION \& BUFFER PROBLEMS

1) a) What is the pH of a 1.00 M HF solution? For $\mathrm{HF}, \mathrm{K}_{\mathrm{a}}=7.0 \times 10^{-4}$
b) What is the pH of 1.00 M HF solution after adding 0.500 M NaF ? For $\mathrm{HF}, \mathrm{K}_{\mathrm{a}}=7.0 \times 10^{-4}$
2) a) What is the pH of 500.0 mL of 0.10 M formic acid $\left(\mathrm{HCO}_{2} \mathrm{H}\right)$ combined with 400.0 mL of 0.20 M sodium formate $\left(\mathrm{NaHCO}_{2}\right)$? $\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-4}$
b) What is the pH after 20.0 mL of 0.50 M HCl is added to the buffer solution in part a?
c) What is the pH after 20.0 mL of 0.50 M NaOH is added to the buffer solution in part a?

SA-SB Titration Problems

1. Use the 4 beakers below to draw these stages for a SA-SB titration.
A. Draw 2 moles HCl . (How do we draw a SA in solution?)
B. Draw what happens when 1 mole NaOH is added.
C. Draw what happens when 2 moles NaOH are added.
D. Draw what happens when 3 moles NaOH are added.

2. Consider the titration of 20.00 mL of 0.200 M HCl with 0.100 M NaOH .

What volume of NaOH must be added to reach the equivalence point?

Calculate the pH of the solution after the following volumes of NaOH have been added: a) 0 mL ; b) 5.00 mL ; c) 40.00 mL ; d) 50.00 mL .

WA-SB Titration Problems

1. Use the 4 beakers below to draw these stages for a WA-SB titration.
A. Draw 2 moles of acetic acid. (How do we draw a WA in solution?)
B. Draw what happens when 1 mole KOH is added.
C. Draw what happens when 2 moles KOH are added.
D. Draw what happens when 3 moles KOH are added.

2. Consider the titration of 50.00 mL of 0.100 M acetic acid with 0.150 M KOH . For acetic acid, $\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}$
What volume of NaOH must be added to reach the equivalence point?

Calculate the pH of the solution after the following volumes of NaOH have been added: a) 0 mL ; b) 10.00 mL ; c) the equivalence point volume; d) 50.00 mL .

