Ch. 13: Fundamental Equilibrium Concepts

Movement of carbon dioxide through tissues and blood cells involves several equilibrium reactions. **OpenStax: Chemistry**

The Equilibrium State

- Not all chemical reactions go to completion there are many that are reversible and they attain a state of equilibrium in which a mixture of reactants and products is present.
- Equilibrium defined:
 - Rate of the forward reaction equals the rate of the reverse reaction.
 - Reactant and product concentrations remain constant and no longer change.
 - It DOES NOT mean reactant and product concentrations are equal!

N_2O_4 (g) \rightleftharpoons 2NO₂ (g)

- Note: a double arrow is used for an equilibrium reaction to show it is a reversible reaction.
- In the forward reaction each molecule of N₂O₄ breaks down to form two molecules of NO₂.
- In the reverse reaction two molecules of NO₂ combine to form N₂O₄.
- Equilibrium occurs when the rate at which an N₂O₄ molecule breaks apart in the forward reaction is equal to the rate at which it is formed by the reverse reaction.

Equilibrium is Dynamic!

The conversions of reactants to products and products to reactants are still going on, although there is no net change in the number of reactant and product molecules.

The Equilibrium Constant							
For a reaction: $\mathbf{aA} + \mathbf{bB} \rightleftharpoons \mathbf{cC} + \mathbf{dD}$							
Equilibrium Constant: $K_c = \frac{[C]^c[D]^d}{[A]^a[B]^b} \leftarrow \frac{products}{reactants}$							
K _c is the ratio of the equilibrium concentrations of products over the equilibrium concentrations of reactants each raised to the power of their stoichiometric coefficients.							
K _c is a constant at a given temperature for a reaction at equilibrium (law of mass action).							

Equilibrium Constant The equilibrium concentrations of reactants and products may be different, but the value for K _c remains the same.							
Trial	[N ₂ O ₄] _i , M	[NO ₂] _i , M	$\left[N_2O_4 ight]_{eq'}M$	[NO ₂] _{eq} , M	Kc		
1	0.0400	0.0000	0.0337	0.0125	4.64x10 ⁻³		
2	0.0000	0.0800	0.0337	0.0125	4.64x10 ⁻³		
3	0.0600	0.0000	0.0522	0.0156	4.66x10 ⁻³		
4	0.0000	0.0600	0.0246	0.0107	4.65x10 ⁻³		
5	0.0200	0.0600	0.0429	0.0141	4.63x10 ⁻³		
$N_2O_4(g) \rightleftharpoons 2NO_2(g)$ For Trial 1							
$\mathbf{K}_{\mathbf{c}} = \frac{[\mathrm{NO}_2]^2}{[\mathrm{N}_2\mathrm{O}_4]} \qquad \mathbf{K}_{\mathbf{c}} =$							

Calculating K_c

 $2NH_{3(g)} \rightleftharpoons N_{2(g)} + 3H_{2(g)}$ At 500 K, the following concentrations were measured: $[N_2] = 3.0 \times 10^{-2} \text{ M}$, $[H_2] = 3.7 \times 10^{-2} \text{ M}$, $[NH_3] = 1.6 \times 10^{-2} \text{ M}$. What is K_c?

Heterogenous Equilibria

Homogeneous equilibria: all substances are in one phase (all gas, all solid, etc.)

<u>Heterogeneous equilibria</u>: substances in 2 or more different phases.

 $CaCO_{3(s)} \rightleftharpoons CaO_{(s)} + CO_{2(g)}$

- Pure solids and liquids have constant concentrations so they are not included in the K expressions.
- Omit solids and liquids from K expressions --only include gases and aqueous substances which have variable concentrations!

Heterogeneous Equilibria

 K_c – use [] terms to represent concentrations of (aq) and (g) substances.

 $K_{\rm p}$ – use P terms to represent the partial pressure of (g) substances.

Write $K_c \operatorname{\underline{and}} K_p$ expressions for the following equations :

a)
$$2Cu_2S(s) + 3O_2(g) \rightleftharpoons 2Cu_2O(s) + 2SO_2(g)$$

b) $Hg(l) + Hg^{2+}(aq) \rightleftharpoons Hg_2^{2+}(aq)$

DON'T include solids and liquids in K expressions!

b) Hg(I) + Hg²⁺(aq) \rightleftharpoons Hg₂²⁺(aq)

Always include charges for ions!

Example K_p

 $CH_{4(g)} + 2H_2S_{(g)} \rightleftharpoons CS_{2(g)} + 4H_{2(g)}$

- At 1000 K, the equilibrium pressure are: CH_4 = 0.20 atm, H_2S = 0.25 atm, CS_2 = 0.52 atm, and H_2 = 0.10 atm.
- What is K_p?

Relationship between K_c and K_p

Pressure is directly proportional to concentration. • $PV = nRT \rightarrow P = (n/V) RT \rightarrow P = MRT$ where n/V = M

 $K_p = K_c(RT)^{\Delta n}$

 $\Delta n = \#$ product gas molecules - # reactant gas molecules

R = 0.08206 L·atm / mol·K

T = temperature in Kelvin

Reaction Quotient, Q

Q is set up like K, but we plug in <u>initial</u> <u>concentrations</u> and compare Q to K to tell which direction (if any) a reaction must go to reach equilibrium.

- If Q_c < K_c, reaction shifts right (small Q means not enough products so shifts right to make more products).
- If Q_c > K_c, reaction shifts left (big Q means too many products so shifts left to convert products into reactants).
- If $Q_c = K_{c'}$ reaction is at equilibrium (no shift).

Q (blue) versus K (red)

Finding Q & Direction of Shift

Example. For the reaction, $B \rightleftharpoons 2A$, $K_c = 3$. Suppose 3.0 moles of A and 3.0 moles of B are introduced into a 2.00 L flask.

- a) Is this system at equilibrium?
- b) In which direction will the reaction proceed to reach equilibrium?
- c) Does the concentration of B increase, decrease or remain the same as the system moves towards equilibrium?

Calculating Q for $B \rightleftharpoons 2A$

- [A] = [B] =
- Q =
- Compare Q to $K_c = 3$
- What direction does equilibria shift?
- Does [B] increase or decrease?

Le Chatelier's Principle

Le Châtelier's principle: When a stress is applied to a system at equilibrium, it will respond by shifting in the direction that counteracts the effect of the stress.

Types of Stresses

- A change in concentration (addition or removal of a reactant or product).
- A change in pressure or volume (only important for gas phase reactions).
- A change in temperature.

Concentration Changes

- Adding a reactant or product, the equilibria shifts away from the increase in order to consume part of the added substance.
- Removing a reactant or product, the equilibria shifts toward the decrease to replace part of the removed species.

Effect of Concentration Changes Addition of a reactant or removal of a product will cause equilibrium to shift to the right. Removal of a reactant or addition of a product or will cause equilibrium to shift to the left.

Increase	Increase	Decrease
$N_{2}(g) +$	$3 H_2(g) \rightleftharpoons$	2 NH ₃ (g)

Decrease Decrease Increase

Changes in P and V

- Increase in volume: more space = more gases allowed. Shift to side with more moles of gas.
- Increase in pressure (same as decrease in volume): less volume = less gas allowed. Shift to side with fewer moles of gas.
- If same number of moles on both sides, P and V don't affect equilibrium.
- Adding an inert gas (e.g. a noble gas) also doesn't cause an equilibrium shift or affect K_c.

https://en.wikip

Effect of Temperature Changes

For an endothermic reaction, heat is a reactant: heat + reactants \rightleftharpoons products $\Delta H^\circ > 0$ kJ/mol

- Adding heat shifts the reaction \rightarrow , $K_c \uparrow$
- Removing heat shifts the reaction \leftarrow , $K_c \downarrow$ Endo likes it hot!

For an exothermic reaction, heat is a product:

- reactants \rightleftharpoons products + heat $\Delta H^{\circ} < 0 \text{ kJ/mol}$
- Adding heat shifts the reaction $\leftarrow, K_c \downarrow$
- Removing heat shifts the reaction \rightarrow , $K_c \uparrow$ Opposite of endo!

Effect of Catalysts & Inert Gases Catalysts – adding a catalyst reduces E_a which occurs to the same extent for both the forward and reverse reactions. It reduces the time required to reach equilibrium but has <u>no effect</u> on K_c or the position of equilibrium. Adding an <u>inert gas</u> also has no effect on position of Equilibrium.

Applying Le Chatelier's Principle

ICE method – use to find eq []'s, given K_c and initial [] 's

- 1. I = initial concentration: Initial concentration of reactants are usually given; initial [Product]'s are assumed to be 0 unless otherwise specified.
- 2. C = change in concentration: Assign change as the variable x; use the stoichiometry of the reaction to assign changes for all species.
- 3. E = equilibrium concentration: E = I + C

Note, values in ICE tables can be in terms of moles or Molarity (or atm for K_p), but values used in the K_c expression must be in terms of Molarity (or atm for K_p).

Solving for x and K_c

In an experiment, 3.00 moles of CO and 5.00 moles of H_2O were placed in a 2.00 L flask at 350 K. CO (g) + H_2O (g) \rightleftharpoons CO₂ (g) + H_2 (g) At equilibrium, there were 2.00 mol of CO remaining. What is the value of the equilibrium constant for this reaction?

		CO (g) +	H ₂ O (g) ≠	$\mathrm{CO}_{2}\left(g ight) +$	$H_{2}\left(g\right)$	
	Initial	1.50 M	2.50 M	0	0	
	Change	- x	- X	+ x	+ x	
	Equilibrium	1.00 M	2.00 M	0.500 M	0.500 M	
x	x = K =					