Ch. 13: Fundamental Equilibrium Concepts


Movement of carbon dioxide through tissues and blood cells involves several equilibrium reactions.

OpenStax: Chemistry

## The Equilibrium State

- Not all chemical reactions go to completion there are many that are reversible and they attain a state of equilibrium in which a mixture of reactants and products is present.
- Equilibrium defined:
- Rate of the forward reaction equals the rate of the reverse reaction.
- Reactant and product concentrations remain constant and no longer change.
- It DOES NOT mean reactant and product concentrations are equal!


## Creative Commons License

Images and tables in this file have been used from the following sources:

- OpenStax:@c Creative Commons Attribution License 4.0.
- ChemWiki (CC BY-NC-SA 3.0): Unless otherwise noted, the StatWiki is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. Permissions beyond the scope of this license may be available at copyright@ucdavis.edu. (cc)BY-NC-SA
- Principles of General Chemistry (CC BY-NC-SA 3.0):
http://2012books.lardbucket.org/pdfs/principles-of-general-chemistry-v1.0.pdf

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

> Note: a double arrow is used for an equilibrium reaction to show it is a reversible reaction.
> In the forward reaction each molecule of $\mathrm{N}_{2} \mathrm{O}_{4}$ breaks down to form two molecules of $\mathrm{NO}_{2}$.
$>$ In the reverse reaction two molecules of $\mathrm{NO}_{2}$ combine to form $\mathrm{N}_{2} \mathrm{O}_{4}$.
> Equilibrium occurs when the rate at which an $\mathrm{N}_{2} \mathrm{O}_{4}$ molecule breaks apart in the forward reaction is equal to the rate at which it is formed by the reverse reaction.

## Equilibrium is Dynamic!

The conversions of reactants to products and products to reactants are still going on, although there is no net change in the number of reactant and product molecules.

Chemical Equilibrium
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$ $\operatorname{rate}_{\mathrm{f}}=k_{\mathrm{f}}\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$ and rate $\mathrm{r}_{\mathrm{r}}=\boldsymbol{k}_{\mathrm{r}}\left[\mathrm{NO}_{2}\right]^{2}$


Starting with $\mathrm{N}_{2} \mathrm{O}_{4}$


Starting with $\mathrm{NO}_{2}$

## Concentration and rate vs. time

Figure 13.2
$\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}$
$\mathrm{N}_{2} \mathrm{O}_{4}=$ colorless
$\mathrm{NO}_{2}=$ orange


## The Equilibrium Constant

For a reaction: $\mathbf{a A}+\mathbf{b B} \rightleftharpoons \mathbf{c C}+\mathbf{d D}$
Equilibrium Constant: $\mathbf{K}_{\mathbf{c}}=\frac{[C]^{C}[D]^{d}}{[A]^{2}[B]^{b}} \leftarrow$ products
$\mathrm{K}_{\mathrm{c}}$ is the ratio of the equilibrium concentrations of products over the equilibrium concentrations of reactants each raised to the power of their stoichiometric coefficients.
$\mathrm{K}_{\mathrm{c}}$ is a constant at a given temperature for a reaction at equilibrium (law of mass action).

## Relationship Between Rate Constants and Equilibrium Constants

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

At equilibrium: rate forward $=$ rate reverse

$$
\begin{aligned}
& k_{\mathrm{f}}\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]=\boldsymbol{k}_{\mathrm{r}}\left[\mathrm{NO}_{2}\right]^{2} \\
& \text { equilibrium expression } \\
& \frac{\mathrm{k}_{\mathrm{f}}}{\mathrm{k}_{\mathrm{r}}}=\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]} \\
& \text { equilibrium constant }
\end{aligned}
$$

$\Rightarrow \mathrm{K}_{\mathrm{c}}$ is the equilibrium constant, a numerical value. $\Rightarrow$ The ratio is the equilibrium constant expression.

## The Equilibrium Constant, $\mathbf{K}_{\text {c }}$

Write the equilibrium constant expressions ( $\mathrm{K}_{\mathrm{c}}$ ) for the following equations.
a) $\mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
b) $\mathbf{2} \mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{\mathbf{2}}(\mathrm{g})+\mathbf{3} \mathrm{H}_{\mathbf{2}}(\mathrm{g})$
a)
b)

## Equilibrium Constant

The equilibrium concentrations of reactants and products may be different, but the value for $\mathrm{K}_{\mathrm{c}}$ remains the same.

| Trial | [ $\left.\mathrm{N}_{2} \mathrm{O}_{4}\right]_{i}$ M M | $\left[\mathrm{NO}_{2}\right]_{i}, \mathrm{M}$ | $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]_{\text {eq }}, \mathrm{M}$ | $\left[\mathrm{NO}_{2}\right]_{\text {eq }}, \mathrm{M}$ | Kc |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.0400 | 0.0000 | 0.0337 | 0.0125 | $4.64 \times 10^{-3}$ |
| 2 | 0.0000 | 0.0800 | 0.0337 | 0.0125 | $4.64 \times 10^{-3}$ |
| 3 | 0.0600 | 0.0000 | 0.0522 | 0.0156 | $4.66 \times 10^{-3}$ |
| 4 | 0.0000 | 0.0600 | 0.0246 | 0.0107 | $4.65 \times 10^{-3}$ |
| 5 | 0.0200 | 0.0600 | 0.0429 | 0.0141 | $4.63 \times 10^{-3}$ |
| $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$ |  |  | For Trial 1 |  |  |
|  | $\mathbf{K}_{\mathbf{c}}=$ | $\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}$ | $\mathrm{K}_{\mathrm{c}}=$ |  |  |

## $\mathrm{K}_{\mathrm{c}}$ Characteristics:

1) Equilibrium can be attained starting with only reactants or products (or can start with a mixture of reactants and products).
2) $K_{c}$ does not depend on the initial concentrations of reactants and products.
3) $K_{c}$ does depend on temperature.
4) $K_{c}$ values are listed without units.
$\Rightarrow$ don't include units when calculating $\mathrm{K}_{\mathrm{c}}$.

## Calculating $\mathrm{K}_{\mathrm{c}}$

$2 \mathrm{NH}_{3(\mathrm{~g})} \rightleftharpoons \mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})}$
At 500 K , the following concentrations were measured: $\left[\mathrm{N}_{2}\right]=3.0 \times 10^{-2} \mathrm{M},\left[\mathrm{H}_{2}\right]=3.7 \times 10^{-2}$ $\mathrm{M},\left[\mathrm{NH}_{3}\right]=1.6 \times 10^{-2} \mathrm{M}$. What is $\mathrm{K}_{\mathrm{c}}$ ?

## Interpreting Equilibrium Constants

- Which system below (all at equilibrium) has the largest equilibrium constant? Smallest? Why?

$\mathrm{A}_{2}+\mathrm{B}_{2} \rightleftharpoons 2 \mathrm{AB}$

$\mathrm{A}_{2}+\mathrm{C}_{2} \rightleftharpoons 2 \mathrm{AC}$

$\mathrm{A}_{2}+\mathrm{D}_{2} \rightleftharpoons 2 \mathrm{AD}$


## $\mathrm{K}_{\mathrm{c}}$ tells us extent of reaction

- Large $K_{c}$ : If $\mathbf{K}_{c}>\mathbf{1 0}^{\mathbf{2}}$, the reaction is nearly complete; products are favored.
$\longleftrightarrow \quad$ Eq lies to right (more products)
- Small $K_{c}$ : If $K_{c}<\mathbf{1 0}^{\mathbf{- 2}}$, the reaction hardly proceeds at all; reactants are favored.
$\rightleftarrows \quad$ Eq lies to left (more reactants)
- If $\mathrm{K}_{\mathrm{c}}$ is in the range $10^{-2}-10^{2}$, appreciable amounts of reactants and products are present.
$\rightleftarrows \quad$ Eq lies close to middle


## Heterogenous Equilibria

Homogeneous equilibria: all substances are in one phase (all gas, all solid, etc.)
Heterogeneous equilibria: substances in 2 or more different phases.

$$
\mathrm{CaCO}_{3(\mathrm{~s})} \rightleftharpoons \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}
$$

- Pure solids and liquids have constant concentrations so they are not included in the $K$ expressions.
- Omit solids and liquids from K expressions --only include gases and aqueous substances which have variable concentrations!


## Heterogeneous Equilibria

$\mathrm{K}_{\mathrm{c}}$ - use [ ] terms to represent concentrations of ( aq ) and ( g ) substances.
$K_{p}$ - use $P$ terms to represent the partial pressure of ( g ) substances.
Write $K_{c}$ and $K_{p}$ expressions for the following equations:
a) $2 \mathrm{Cu}_{2} \mathrm{~S}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{Cu}_{2} \mathrm{O}(\mathrm{s})+2 \mathrm{SO}_{2}(\mathrm{~g})$
b) $\mathrm{Hg}(\mathrm{l})+\mathrm{Hg}^{2+}(\mathrm{aq}) \rightleftharpoons \mathrm{Hg}_{2}{ }^{2+}(\mathrm{aq})$

DON'T include solids and liquids in $K$ expressions!

## Answers $\mathrm{K}_{\mathrm{c}}$ \& $\mathrm{K}_{\mathrm{p}}$ Expressions

a) $2 \mathrm{Cu}_{2} \mathrm{~S}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{Cu}_{2} \mathrm{O}(\mathrm{s})+2 \mathrm{SO}_{2}(\mathrm{~g})$
b) $\mathrm{Hg}(\mathrm{l})+\mathrm{Hg}^{2+}(\mathrm{aq}) \rightleftharpoons \mathrm{Hg}_{2}{ }^{2+}(\mathrm{aq})$

Always include charges for ions!

## Example $\mathrm{K}_{\mathrm{p}}$

$\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})} \rightleftharpoons \mathrm{CS}_{2(\mathrm{~g})}+4 \mathrm{H}_{2(\mathrm{~g})}$

- At 1000 K , the equilibrium pressure are: $\mathrm{CH}_{4}$ $=0.20 \mathrm{~atm}, \mathrm{H}_{2} \mathrm{~S}=0.25 \mathrm{~atm}, \mathrm{CS}_{2}=0.52 \mathrm{~atm}$, and $\mathrm{H}_{2}=0.10 \mathrm{~atm}$.
- What is $\mathrm{K}_{\mathrm{p}}$ ?


## Relationship between $\mathrm{K}_{\mathrm{c}}$ and $\mathrm{K}_{\mathrm{p}}$

Pressure is directly proportional to concentration.

- $P V=n R T \rightarrow P=(n / V) R T \rightarrow P=M R T$ where $n / V=M$

$$
K_{p}=K_{c}(R T)^{\Delta n}
$$

$\Delta \mathrm{n}=$ \# product gas molecules - \# reactant gas molecules
$\mathrm{R}=0.08206 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{K}$
$\mathrm{T}=$ temperature in Kelvin

## When does $\mathrm{K}_{\mathrm{c}}=\mathrm{K}_{\mathrm{p}}$ ?

They are equal when there are the same \# of gas molecules on both sides of equation.
Example. Does $\mathrm{K}_{\mathrm{c}}=\mathrm{K}_{\mathrm{p}}$ ?
a) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HF}(\mathrm{g})$
b) $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$

## Manipulating Reactions \& K values

## A. Reversing a Reaction

1) $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g}) \quad \mathrm{K}_{1}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{NO}^{2}\left[\mathrm{O}_{2}\right]\right.}$
2) $2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \mathrm{K}_{2}=\frac{\left[\mathrm{NO}^{2}\left[\mathrm{O}_{2}\right]\right.}{\left[\mathrm{NO}_{2}\right]^{2}}$
$K_{2}$ is reciprocal of $K_{1}$ :
If $\mathrm{K}_{1}=6.8 \times 10^{5}$, then $\mathrm{K}_{2}=$

## Example: Converting from $\mathbf{K}_{\mathbf{c}}$ to $\mathbf{K}_{\mathbf{p}}$

$\mathbf{N}_{\mathbf{2}}(\mathbf{g})+\mathbf{3} \mathbf{H}_{\mathbf{2}}(\mathbf{g}) \rightleftharpoons \mathbf{2} \mathbf{N H}_{3}(\mathbf{g})$ At $375^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{c}}=2.79 \times 10^{-5}$ What is $\mathrm{K}_{\mathrm{p}}$ ?

$$
K_{P}=K_{\mathrm{c}}(\mathrm{RT})^{\Delta n}
$$

Note: while $K_{c}$ and $K_{p}$ don't have units we must plug in values that have correct units or K values wouldn't be a constant!

## B. Adding Reactions:

1. $2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \mathrm{K}_{1}=\frac{\left[\mathrm{NO}^{2}\left[\mathrm{O}_{2}\right]\right.}{\left[\mathrm{NO}_{2}\right]^{2}}$
2. $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad \mathrm{K}_{2}=\frac{\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}{\left[\mathrm{H}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}$
3. $2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NO}+2 \mathrm{H}_{2} \mathrm{O} \quad \mathrm{K}_{3}=\frac{\left[\mathrm{NO}^{2}\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}\right.}{\left[\mathrm{NO}_{2}\right]^{2}\left[\mathrm{H}_{2}\right]^{2}}$
Thus $\mathrm{K}_{3}=\mathrm{K}_{1} * \mathrm{~K}_{2}$

If $\mathrm{K}_{1}=1.5 \times 10^{-6}$ and $\mathrm{K}_{2}=2.4 \times 10^{47}$
Then $\mathrm{K}_{3}=$

## Reaction Quotient, Q

$Q$ is set up like $K$, but we plug in initial concentrations and compare Q to K to tell which direction (if any) a reaction must go to reach equilibrium.

- If $\mathrm{Q}_{\mathrm{c}}<\mathrm{K}_{{ }^{\prime}}$ reaction shifts right (small Q means not enough products so shifts right to make more products).
- If $Q_{c}>K_{c}$ reaction shifts left (big $Q$ means too many products so shifts left to convert products into reactants).
- If $\mathrm{Q}_{\mathrm{c}}=\mathrm{K}_{\mathrm{C}^{\prime}}$ reaction is at equilibrium (no shift).


## Finding Q \& Direction of Shift

Example. For the reaction, $B \rightleftharpoons 2 A$,
$K_{c}=3$. Suppose 3.0 moles of $A$ and 3.0 moles of $B$ are introduced into a 2.00 L flask.
a) Is this system at equilibrium?
b) In which direction will the reaction proceed to reach equilibrium?
c) Does the concentration of B increase, decrease or remain the same as the system moves towards equilibrium?

Q (blue) versus K (red)


## Calculating $\mathbf{Q}$ for $\quad B \rightleftharpoons 2 A$

[A] =
$[B]=$

- $\mathrm{Q}=$
- Compare Q to $\mathrm{K}_{\mathrm{c}}=3$
- What direction does equilibria shift?
- Does [B] increase or decrease?


## Le Chatelier's Principle

Le Châtelier's principle: When a stress is applied to a system at equilibrium, it will respond by shifting in the direction that counteracts the effect of the stress.

## Types of Stresses

- A change in concentration (addition or removal of a reactant or product).
- A change in pressure or volume (only important for gas phase reactions).
- A change in temperature.


## Concentration Changes

- Adding a reactant or product, the equilibria shifts away from the increase in order to consume part of the added substance.
- Removing a reactant or product, the equilibria shifts toward the decrease to replace part of the removed species.


## Effect of Concentration Changes

Addition of a reactant or removal of a product will cause equilibrium to shift to the right.
Removal of a reactant or addition of a product or will cause equilibrium to shift to the left.

$$
\begin{array}{cl}
\text { Increase } & \text { Increase } \\
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons & \text { Decrease } \\
2 \mathrm{NH}_{3}(\mathrm{~g})
\end{array}
$$

Decrease Decrease Increase

## Changes in P and V

- Increase in volume: more space = more gases allowed. Shift to side with more moles of gas.
- Increase in pressure (same as decrease in volume): less volume = less gas allowed. Shift to side with fewer moles of gas.
- If same number of moles on both sides, P and V don't affect equilibrium.
- Adding an inert gas (e.g. a noble gas) also doesn't cause an equilibrium shift or affect $K_{c}$.


## Shifting Equilibria: Vol./Press.

When volume is decreased, pressure is increased. Equilibrium is driven toward the side with fewer moles of gas. What happens when volume is increased?

$\frac{\text { Image from UC Davis: hitp://chemwiki_ucdavis.edu Textibook Maps/General Chemistry Textibook Maps/Map\%3A }}{\text { PRIME_Moore_et_al.)/13Chemical_Equilibrium/13.09\%3A_The_Effect_of_a_Change_in_Pressure, CC-BY-NC-SA }}$ $n^{33}$

## Changes in $\mathbf{P}$ and V

$$
\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g)
$$

$1+3$ = 4 moles (left) 2 moles (right)
What will happen if we increase pressure?

What will happen if we increase volume?

## How $\mathbf{T}$ alters $K_{c}$

Changes in Conc., $P$, and $V$ just shift equilibrium position to maintain a constant $K$.
Both the equilibrium position and $K_{c}$ will vary with temperature:
$\Rightarrow K_{c}$ is larger when the reaction shifts right (more products).
$\Rightarrow K_{c}$ is smaller when the reaction shifts left (more reactants).

Example. The temperature is decreased for the reaction: $2 \mathrm{CO}_{2} \rightleftharpoons 2 \mathrm{CO}+\mathrm{O}_{2}, \Delta \mathrm{H}=566 \mathrm{~kJ}$.
a) Will the equilibrium shift left or right? b) Does $\mathrm{K}_{\mathrm{c}}$ become larger or smaller?

## Effect of Temperature Changes

For an endothermic reaction, heat is a reactant: heat + reactants $\rightleftharpoons$ products $\Delta H^{\circ}>0 \mathrm{~kJ} / \mathrm{mol}$

- Adding heat shifts the reaction $\rightarrow, K_{c} \uparrow$
- Removing heat shifts the reaction $\leftarrow, K_{\mathrm{c}} \downarrow$

Endo likes it hot!
For an exothermic reaction, heat is a product: reactants $\rightleftharpoons$ products + heat $\Delta H^{\circ}<0 \mathrm{~kJ} / \mathrm{mol}$

- Adding heat shifts the reaction $\leftarrow, K_{\mathrm{c}} \downarrow$
- Removing heat shifts the reaction $\rightarrow, K_{c} \uparrow$ Opposite of endo!


## Effect of Catalysts \& Inert Gases

Catalysts - adding a catalyst reduces $\mathrm{E}_{\mathrm{a}}$ which occurs to the same extent for both the forward and reverse reactions.

- It reduces the time required to reach equilibrium but has no effect on $K_{c}$ or the position of equilibrium.
- Adding an inert gas also has no effect on position of Equilibrium.



## ICE method - use to find eq [ ]'s, given $\mathrm{K}_{\mathrm{c}}$ and initial [ ] 's

1. I = initial concentration: Initial concentration of reactants are usually given; initial [Product]'s are assumed to be 0 unless otherwise specified.
2. $\mathbf{C}=$ change in concentration: Assign change as the variable $x$; use the stoichiometry of the reaction to assign changes for all species.
3. $E=$ equilibrium concentration: $E=I+C$

Note, values in ICE tables can be in terms of moles or Molarity (or atm for $\mathrm{K}_{\mathrm{p}}$ ), but values used in the $\mathrm{K}_{\mathrm{c}}$ expression must be in terms of Molarity (or atm for $K_{p}$ ).

Endotheric or Exothermic Reaction?
$\mathrm{CoCl}_{4}{ }^{2-}+6 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}+4 \mathrm{Cl}^{-}$ blue


Room Temperature


## Applying Le Chatelier's Principle

- Determine how the equilibrium will shift if the following changes are made:
- $2 \mathrm{Cl}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightleftharpoons 4 \mathrm{HCl}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \quad \Delta \mathrm{H}^{0}=+113 \mathrm{~kJ}$
a) Temperature is increased
b) Volume is increased
c) Pressure is decreased
d) HCl is added
e) $\mathrm{Ne}(\mathrm{g})$ is added
f) $\mathrm{Cl}_{2}$ is added
g) $\mathrm{H}_{2} \mathrm{O}$ is removed


## Solving for Equil. Conc.

- 3 methods for finding equilibrium concentrations:
- Use perfect squares (e.g. $\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}$ ) - $50.5=\frac{(2 x)^{2}}{(1.00-x)^{2}}$
- Assume $x$ is much smaller than initial concentration; General rule: if $\mathrm{K}<10^{-3}$, assume $x$ is small
- Omit -x terms
- Use quadratic if $\mathrm{K}_{\mathrm{c}}$ is too big to make assumption.
$\begin{aligned} & \text { - get two values of } \mathrm{x} \text {; one will give } \\ & \text { negative eq concentration(s) }\end{aligned} \quad \mathrm{x}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$


## Equil. Conc. - Perfect Squares

Calculate the equilibrium concentrations of all species.

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=50.5
$$

Given the initial concentrations of $\mathrm{H}_{2}$ and $\mathrm{I}_{2}$ are both 1.00 M . Set up ICE

|  | $\mathrm{H}_{2}(\mathrm{~g})+$ | $\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons$ | $\mathbf{2 H I}(\mathrm{g})$ |
| :---: | :---: | :---: | :---: |
| I | 1.00 | 1.00 | 0 |
| C | -x | -x | +2 x |
| E | $1.00-\mathrm{x}$ | $1.00-\mathrm{x}$ | +2 x |

Set up $\mathrm{K}_{\mathrm{c}} \quad K_{c}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{L}_{2}\right]}$

## Using Q to find Eq Concentrations

A 5.00 L reaction vessel is filled with 2.50 moles of $\mathbf{H}_{2}, \mathbf{2 . 5 0}$ moles of $I_{2}$, and 25.0 moles of HI. $K_{c}=81.0$ at 670 K . $\mathbf{H}_{2}(\mathrm{~g})+\mathbf{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$,
I (M)
Is it at equilibrium? Use $Q$ to tell direction it proceeds! Q =
compare $Q$ to $K$
What are the equilibrium concentrations?


## Quadratic Method

Assumption that x is small isn't always valid!
What to do?
Quadratic formula!!!

$$
\mathrm{x}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

## -Gives two values of x :

*If obtain $+x$ and $-x$, pick $+x$ !
$\star$ If both x's are + , pick smaller $x$ !
Can eq concentrations (M) be - values?
Note: only one x should give you all + eq concs!

## Perfect Square Cont

$$
K_{c}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{l}_{2}\right]} \quad \text { Plug in eq terms from ICE: }
$$

Solve
for x :

Plug $x$ into
eq [ ]'s:
-plug eq concs. back into $\mathrm{K}_{\mathrm{c}}$ to doublecheck!
Approximation Method- Assume small x
Calculate the equilibrium concentrations for

$$
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=1.0 \times 10^{-5}
$$

Initial: $0.80 \mathrm{M} \quad 0.20 \mathrm{M}$

- Set up $\mathrm{K}_{\mathrm{c}}$ :
- Set up ICE and plug eq concs into $\mathrm{K}_{\mathrm{c}}$ :
- Assume x is small (its much smaller than 0.80 or 0.20 ) because $\mathrm{K}_{\mathrm{c}}$ is small (less than $10^{-3}$ )
$\mathrm{x}=$
$\left[\mathrm{N}_{2}\right]=\quad,\left[\mathrm{O}_{2}\right]=\quad,[\mathrm{NO}]=$
- Check assumption: (x /initial concentration) * $100 \%$ < $5 \%$


## Quadratic Example

$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HF}(\mathrm{g}), \mathrm{K}_{\mathrm{c}}=1.15 \times 10^{2}$
3.000 moles of $\mathrm{H}_{2}$ and 6.000 moles of $\mathrm{F}_{2}$ are placed in a 3.000 L container
Calculate the equilibrium concentrations of all species.
x =
$\left[\mathrm{H}_{2}\right]=$
$\left[F_{2}\right]=$
[HF] =
SOlving for X and $\mathrm{K}_{\mathrm{C}}$
In an experiment, 3.00 moles of CO and 5.00 moles of $\mathrm{H}_{2} \mathrm{O}$
were placed in a 2.00 L flask at 350 K .
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
At equilibrium, there were 2.00 mol of CO remaining.
What is the value of the equilibrium constant for this

reaction? | $\mathrm{CO}(\mathrm{g})+$ | $\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons$ | $\mathrm{CO}_{2}(\mathrm{~g})+$ | $\mathrm{H}_{2}(\mathrm{~g})$ |  |
| :--- | :---: | :---: | :---: | :---: |
| Initial | 1.50 M | 2.50 M | 0 | 0 |
| Change | -x | -x | +x | +x |
| Equilibrium | 1.00 M | 2.00 M | 0.500 M | 0.500 M |

