

Why study acids \& bases?

*Many household substances, including cleaning solutions and food/beverages that we consume, are acids or bases.

* In the environment, the pH of rain, water and soil can also have significant effects.
*Acid - base reactions occurring in our body are essential for life. They are also involved in many industrial processes.

Bronsted-Lowry Reactions involve the transfer of $\mathbf{1} \mathbf{H}^{+}$

A conjugate base is formed when a Brønsted acid loses a proton.

Bronsted Acids and Bases

A conjugate acid is formed when a Brønsted base accepts a proton.

Note: Water is amphoteric - it can act as an acid or a base depending on what its reacting with.

Bronsted-Lowry Reaction

Write an equation for the dissociation of HCN in water. Identify the acid, the base, the conjugate acid, and the conjugate base.

Watch charges! Acid loses $1 \mathrm{H}^{+}$, base gains $1 \mathrm{H}^{+}$

Identify Conjugate Acid/Base

a) What is the conjugate acid of $\mathrm{CO}_{3}{ }^{\mathbf{2 -}}$

b) What is the conjugate base of $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$?

Lewis Acids and Bases

Broadest acid base definition since Lewis acids don't have to contain H^{+}.

- Looks at electron transfer instead of H^{+}transfer
- Organic CHM primarily uses this AB theory.

A Lewis base is a an electron pair donor.
A Lewis acid is an electron pair acceptor.
E.g. $\mathrm{H}^{+}+: \mathrm{NH}_{3} \rightarrow \mathrm{NH}_{4}{ }^{+}$
\Rightarrow Ammonia donates the electron pair to H^{+}to make the bond; H^{+}accepts the electron pair

Hydronium lons

- $\mathrm{HA}(\mathrm{aq}) \leftrightarrows \mathrm{H}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq})$
- H^{+}is very reactive and will bond with O in $\mathrm{H}_{2} \mathrm{O}$ to form $\mathrm{H}_{3} \mathrm{O}^{+}$
- H^{+}and $\mathrm{H}_{3} \mathrm{O}^{+}$are used interchangeably but $\mathrm{H}_{3} \mathrm{O}^{+}$is a more accurate representation.

Strong Acids

A strong acid ionizes completely in water to form $\mathrm{H}_{3} \mathrm{O}^{+}$ions $\left(\mathrm{H}^{+}\right)$. SA's are strong electrolytes.
$\mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{NO}_{3}{ }^{-}(\mathrm{aq})$

- A one way arrow is used since this reaction is complete, all of the HNO_{3} molecules break apart to form $\mathrm{H}_{3} \mathrm{O}^{+}$and NO_{3} - ions.
- These acids have very weak conjugate bases
- For SA, eq lies very far to the right side!

KNOW 7 Strong acids! Memorize these!
$\mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}, \mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HClO}_{4}, \mathrm{HClO}_{3}$

Strong Bases

A strong base ionizes completely in water to form OH- ions. SB's are strong electrolytes!

SB dissociates in water; it doesn't react with it: $\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})(100 \%$ ions $)$
-This reaction also goes to completion
\Rightarrow SB's completely dissociate into ions
Strong Bases: These Group 1A \& 2A hydroxides $\mathrm{LiOH}, \mathrm{NaOH}, \mathrm{KOH}, \mathrm{RbOH}, \mathrm{CsOH}, \mathrm{Ca}(\mathrm{OH})_{2}$, $\mathrm{Ba}(\mathrm{OH})_{2}, \mathrm{Sr}(\mathrm{OH})_{2}$ Memorize the 8 SB 's!

Weak Base

A weak base ionizes only to a small extent in $\mathbf{H}_{2} \mathbf{O}$. WB's are weak electrolytes!

$$
\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrows \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

- Equilibrium lies to the left since most of the ammonia molecules have not accepted protons to form $\mathrm{NH}_{4}{ }^{+}$and OH^{-}ions.
- Common examples of WB's are ammonia and amines (e.g. $\mathrm{CH}_{3} \mathrm{NH}_{2}$)

Weak Acids

- A weak acid ionizes only to a small extent in $\mathbf{H}_{2} \mathbf{O}$.
- WA's are weak electrolytes!
E.g. $\mathrm{HCN}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{CN}^{-}$ (aq)
A two-way arrow is used since this reaction is not complete but instead consists of an equilibrium mixture of HCN molecules, $\mathrm{H}_{3} \mathrm{O}^{+}$and CN^{-}ions

Equilibrium lies to the left since most of the acid molecules have not ionized.

Common WA's: $\mathrm{HF}, \mathrm{HNO}_{2}, \mathrm{HCN}, \mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{H}_{2} \mathrm{CO}_{3}$, carboxylic acids like $\mathrm{CH}_{3} \mathrm{COOH}$ and HCOOH

SA, WA, SB, WB solutions

Draw the following in water: $\mathrm{HNO}_{3}, \mathrm{HF}, \mathrm{Ca}(\mathrm{OH})_{2}$, and NH_{3}. Assume you have 4 formula units or molecules for each substance.

Autoionization of Water

In water a H^{+}ion can be transferred between $\mathrm{H}_{\mathbf{2}} \mathrm{O}$ molecules.

water molecules
hydroxide hydronium
Acid Base
CB CA

This equilibrium process is highly reactant favored thus it gives rise to a very small equilibrium constant.

Equilibrium Constant for Water Ionization, K_{w}

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

$$
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

Why is water omitted?
$\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrows \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
or $K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
$K_{w}=1 \times 10^{-14}$ at $25{ }^{\circ} \mathrm{C}$

Relationship between acidity, $\left[\mathrm{H}^{+}\right],\left[\mathrm{OH}^{-}\right]$

$$
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14}
$$

Neutral: $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-7} \mathrm{M}$
Acidic: $\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right]$
Basic: $\left[\mathrm{H}^{+}\right]<\left[\mathrm{OH}^{-}\right]$
Example. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=5.6 \times 10^{-4} \mathrm{M}$. What is $\left[\mathrm{OH}^{-}\right]$? Is this solution acidic or basic?
pH: A measure of Acidity
${ }^{\circ} \mathrm{pH}$ is the - log of the H^{+}concentration (M)

- Scale was proposed to give us convenient numbers to work with

Relationship Between pH and Acidity
$\mathrm{pH}<7,\left[\mathrm{H}^{+}\right]>1.0 \times 10^{-7} \mathrm{M} \quad$ Acidic $\mathrm{pH}=7,\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-7} \mathrm{M}$
Neutral
$\mathrm{pH}>7,\left[\mathrm{H}^{+}\right]<1.0 \times 10^{-7} \mathrm{M} \quad$ Basic

Figure 14.2	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right](\mathrm{M})$	$\left[\mathrm{OH}^{\prime}\right](\mathrm{M})$	pH	POH	Sample Solution	
	10^{1}	10^{-15}	-1	15	-	
	10° or 1	10^{-14}	0	14	- 1 MHCl	acidic
	10^{-1}	10^{-13}	1	13	gastric juice	
	10^{-2}	10^{-12}	2	12	- lime juice ${ }^{\text {a }}$ ($\mathrm{MCH}_{2} \mathrm{CO}_{\mathbf{H}}$ (vinegar)	
	10^{-3}	10^{-11}	3	11	- stomach acid	
	10^{-4}	10^{-10}	4	10	- wne ${ }^{\text {crange uice }}$	
	10^{-5}	10^{-9}	5	9	- collee	
	10^{-6}	10^{-8}	6	8	- - rain water	
	10^{-7}	10^{-7}	7	7	- - pure water	neutral
	10^{-8}	10^{-6}	8	6	$\square^{\text {blood }}$	
	10^{-9}	10^{-5}	9	5	baking soda	
	10^{-10}	10^{-4}	10	4		
	10^{-11}	10^{-3}	11	3	- Mik or Magnesa	
	10^{-12}	10^{-2}	12	2	- household ammonia, NH_{3}	
	10^{-13}	10^{-1}	13	1	-bleach	
	10^{-24}	10° or 1	14	0	- 1 MNaOH	bas
	10^{-15}	10^{1}	15	-1		

pH Sig Figs

$$
\begin{aligned}
& 2 \text { sig figs } \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=} 5.6 \times 10^{-4} \mathrm{M} \quad 2 \text { decimal places } \\
& \mathrm{pH}=-\log \left(5.6 \times 10^{-4}\right)=3.25
\end{aligned}
$$

3 related to exponent; tells us acidity
Find $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right], \mathrm{pH}, \& \mathrm{pOH}$ if $[\mathrm{OH}]=9.8 \times 10^{-9} \mathrm{M} \quad 2 \mathrm{sf}$ $\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log 9.8 \times 10^{-9}=8.01(2 \mathrm{dec} \mathrm{pl})$
$\mathrm{pH}=14-\mathrm{pOH}=14-8.01=5.99(2 \mathrm{dec} \mathrm{pl})$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}=10^{-5.99}=1.0 \times 10^{-6} \mathrm{M}$ (2 sf)

Complete the following table

pH	[$\left.\mathbf{H}^{+}\right] \mathbf{M}$	[OH $]$ M	pOH	A, B, N ?
	1.0×10^{-9}			
4.815				
			2.30	

Conjugate Acid-Base Pair Trends

1. A stronger acid loses its proton more readily than a weaker acid and a stronger base gains than a weaker acid and a stronger base ga
2. The stronger the acid, the weaker its conjugate base. Likewise, the stronger the base, the weaker its conjugate acid.
3. Proton transfer reactions proceed from the stronger acid to the stronger base. Thus, the stronger acid to the stronger base. Thus, the
equilibria lies on the side of the weaker acidbase pair.

Strengths of Acids/Bases

e.g. $\mathrm{HS}^{-}(\mathrm{aq})+\mathrm{HF}(\mathrm{aq}) \leftrightarrows \mathrm{H}_{2} \mathrm{~S}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq})$

From Table 14.8

- Which acid is stronger?
- Which base is stronger?
- Which side does equilibria lie on?

pH of Strong Acids/Bases

Calculate pH of $0.103 \mathrm{M} \mathrm{HNO}_{3}$ solution.
$\mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}-(\mathrm{aq})$

Calculate pH of $0.020 \mathrm{M} \mathrm{Sr}(\mathrm{OH})_{2}$ soln.
$\mathrm{Sr}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow \mathrm{Sr}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})$

Which has higher pH ?

a. 0.10 M HCl or 0.10 M HCOOH
b. 0.10 M HCl or 0.0010 M HCl
c. 0.10 M NaOH or $0.10 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$

Weak Acids; Acid-Dissociation Constants (K_{a})
The ionization of a weak acid, HA , in water:

omit $\mathrm{H}_{2} \mathrm{O}$ since it's a liquid

K_{a} is called the acid dissociation constant.
The larger the value of K_{a}, the stronger the acid.

Solution (at $\left.25^{\circ} \mathrm{C}\right)$	\mathbf{K}_{a}	$\mathbf{p H}$
0.10 M HF	3.5×10^{-4}	2.23
$0.10 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$	1.8×10^{-5}	2.87

Equilbria of Weak Acids

$\mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq})$

- $\mathrm{pK}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}}$: stronger acid $=$ lower pK_{a}
percent ionization $=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\text {eq }}}{[\mathrm{HA}]_{0}} \times 100 \%$
- As acid strength \uparrow, indicate if each is higher or lower:
- $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
- pH
- \% ionization
- Ka
- $\mathbf{p K}_{\mathrm{a}}$

Weak Acids; Acid-Ionization Constants $\left(\mathrm{K}_{\mathrm{a}}\right)$

Acids	K_{a} values at $25^{\circ} \mathrm{C}$
HF	3.5×10^{-4}
HNO_{2}	4.6×10^{-4}
HNCO	2.0×10^{-4}
$\mathrm{HCO}_{2} \mathrm{H}$	1.8×10^{-4}
$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	1.8×10^{-5}
HClO	3.5×10^{-8}
HBrO	2.8×10^{-9}
HCN	4.9×10^{-10}
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$	6.3×10^{-5}

NOTE: The reported constants vary - make sure to use the value provided in the question.
Additional K_{a} values found in appendix in the OpenSTAX book. ${ }^{32}$

Weak Acid Problems

- Set up ICE tables \& K_{a}
- With small K values, assume x will be small to simplify math.
WA problem types:
- Given $[H A]_{i}$ and $K_{a^{\prime}}$ find all equilibrium concentrations and pH
- Given $[\mathrm{HA}]_{i}$ and pH , find all equilibrium concentrations and K_{a}
- Given $[\mathrm{HA}]_{i}$ and \% dissociation, find eq concentrations, pH and K_{a}

Find pH of Weak Acid

Find the equilibrium concentrations of all substances and the pH of a 0.50 M solution of HClO (hypochlorous acid). $\mathrm{K}_{\mathrm{a}}=3.5 \times 10^{-8}$

- Set up ICE Table

	$\mathrm{HClO}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{ClO}^{-}$			
I				
C				
E				

Find pH of Weak Acid

- Write K_{a} expression for this reaction
- Plug eq terms into K_{a} and solve for x :
- $\mathrm{X}=$
- Check approximation: ($\left.\mathrm{x} /[\mathrm{HA}]_{\mathrm{j}}\right) \mathrm{x} 100<5 \%$
$\mathrm{x}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{ClO}{ }^{-}\right]=$

$$
[\mathrm{HClO}]=0.50-x=
$$

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=
$$

Find K_{a} for weak acid

Find the K_{a} of a 1.25 M solution of nitrous acid, HNO_{2}.
The pH of this solution is measured to be 1.62.
Write hydrolysis reaction \& K_{a} expression!
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}=$
(keep 2 sf since pH has 2 dec pl)
$\left[\mathrm{NO}_{2}{ }^{-}\right]=$
$\left[\mathrm{HNO}_{2}\right]=$
Plug in $x\left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)$since we know value from pH !
$K_{\mathrm{a}}=$

Percent lonization

\% dissociation is the same calculation as checking assumption of a small x.

- \% dissociation $=\left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\text {eq }} /[\mathrm{HA}]_{\mathrm{i}}\right) \times 100$
- Calculate the percent dissociation from the previous problem.
\% dissociation =
- Will the percent dissociated increase or decrease as an acid is diluted?

$$
\begin{gathered}
\text { Polyprotic Acids } \\
\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrows \mathrm{HC}_{2} \mathrm{O}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \\
\cdot \mathrm{K}_{\mathrm{a} 1}=\left[\mathrm{HC}_{2} \mathrm{O}_{4}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] /\left[\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right]=5.9 \times 10^{-2} \\
\mathrm{HC}_{2} \mathrm{O}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrows \mathrm{C}_{2} \mathrm{O}_{4}^{2-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \\
\cdot \mathrm{K}_{\mathrm{a} 2}=\left[\mathrm{C}_{2} \mathrm{O}_{4}^{2}-\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] /\left[\mathrm{HC}_{2} \mathrm{O}_{4}^{-}\right]=6.4 \times 10^{-5}
\end{gathered}
$$

In general, $\mathrm{K}_{\mathrm{a} 1}>\mathrm{K}_{\mathrm{a} 2}>\mathrm{K}_{\mathrm{a} 3} \ldots$ Why?

- pH of a polyprotic acid solution primarily arises from $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right.$] formed in the $1^{\text {st }}$ step.

Weak Bases; Base-Ionization Constants (K_{b})
The ionization of a weak base in water:

$$
\begin{aligned}
& \mathrm{B}(a q)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{HB}+(a q)+\mathrm{OH}^{-}(a q) \\
& K_{\mathrm{b}}=\frac{\left[\mathrm{HB}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{B}]}
\end{aligned}
$$

K_{b} is called the base dissociation constant.
The larger the value of $\boldsymbol{K}_{\mathrm{b}}$, the stronger the base.

Weak Bases

Similar to WA problems but base hydrolysis reaction forms OH^{-}(this is x !) and use K_{b}

- $\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrows \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
$\mathrm{K}_{\mathrm{b}}=\left[\mathrm{NH}_{4}{ }^{+}\right]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{NH}_{3}\right]$
- K_{b} Values for Weak Bases
- Why are amines (derivatives of NH_{3}) basic?
\Rightarrow Lone e-pair on N attracts H from water.
N pulls H^{+}off of water.

Weak Bases; $\mathbf{K}_{\mathbf{b}}$ Constants
Base Formula K_{b} pK_{b} phosphate ion $\mathrm{PO}_{4}{ }^{3-}$ 2.1×10^{-2} 1.68 dimethylamine $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}$ 5.4×10^{-4} 3.27 methylamine $\mathrm{CH}_{3} \mathrm{NH}_{2}$ 4.6×10^{-4} 3.34 trimethlyamine $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$ 6.3×10^{-5} 4.20 ammonia NH_{3} 1.8×10^{-5} 4.75 pyridine $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ 1.7×10^{-9} 8.77 aniline $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$ 7.4×10^{-10} 9.13

Calculate pH of a Weak Base

Calculate the pH of a 0.50 M dimethylamine $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}\right)$ solution. $\mathrm{K}_{\mathrm{b}}=5.4 \times 10^{-4}$

Write reaction, set up K_{b}, fill in ICE table, solve for x !
$\mathrm{X}=$?
Check approximation! Is $x<5 \%$?
$\mathrm{Eq}\left[\right.$]'s: $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}{ }^{+}\right]=\left[\mathrm{OH}^{-}\right]=\quad\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}\right]=$
How do we find pH ?

Calculate pH of a Weak Base

1) $\left[\mathrm{OH}^{-}\right]=$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\mathrm{K}_{\mathrm{w}} /\left[\mathrm{OH}^{-}\right]=$
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=$
2) this is easiest way
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=$
$\mathrm{pH}=14-\mathrm{pOH}=$

Calculate K_{b} for a Weak Base

A 0.065 M solution of methylamine, $\mathrm{CH}_{3} \mathrm{NH}_{2}$, has a pH of 11.70. What is K_{b} for $\mathrm{CH}_{3} \mathrm{NH}_{2}$?

Calculate K_{b}

What is the K_{b} for acetate if K_{a} is 1.8×10^{-5} for acetic acid?

For conjugate pairs: $\mathrm{K}_{\mathrm{a}} \cdot \mathrm{K}_{\mathrm{b}}=10^{-14}$

Properties of Salts

- Acid + Base $\boldsymbol{\rightarrow}$ Salt + Water
E.g. $\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
- Salts are ionic products of acid-base reaction.
- Cation in salt: comes from the base
- Anion in salt: comes from the acid
- Salts can be neutral, acidic, or basic depending on the strength of the acid or base from which they're made.

General Ion Categories

1) Acidic ions: Most cations (except 1A \& 2A) E.g. $\mathrm{NH}_{4}{ }^{+}, \mathrm{Al}^{3+}, \mathrm{Cu}^{2+}$
2) Neutral lons: cations from strong bases and anions from strong acids
Cations: Group 1A \& 2A (except Be)
Anions: $\mathrm{NO}_{3}{ }^{-}, \mathrm{Cl}, \mathrm{Br}^{-}, \mathrm{I}, \mathrm{ClO}_{4} ; \mathrm{ClO}_{3}^{-}\left(\right.$except $\left.\mathrm{HSO}_{4}{ }^{-}\right)$
3) Basic lons: Most anions derived from weak acids.
E.g. $\mathrm{F}, \mathrm{CN}^{-}, \mathrm{CH}_{3} \mathrm{COO}^{-}, \mathrm{NO}_{2}{ }^{-}$

Some Metal Ions form Acidic Salts

Small, highly charged metal ions can react with water to produce acidic solution. Easier to break O-H bonds and form hydronium's.

Types of Salts

Neutral Salts - salt formed in SA-SB rxn

- cation from SB and anion from SA are neutral ions
- Neutral ions don't react with water!
- E.g. $\mathrm{NaCl} \mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NR}^{2} \mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NR}$

Acidic Salts - formed in SA-WB reaction

- typically contain acidic cation

Cation is

1) conjugate acid of WB (e.g. $\mathrm{NH}_{4}{ }^{+}$) or
2) small, highly charged metal ion (e.g. Al^{3+})
E.g. $\mathrm{NH}_{4} \mathrm{Cl} \quad \mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NR}$ (chloride is neutral ion)
$\mathbf{N H}_{4}{ }^{+}(a q)+\mathbf{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{NH}_{3}(a q)+\mathbf{H}_{3} \mathrm{O}^{+}(a q)$
An acidic ion loses H^{+}ions as it forms hydronium ions

Types of Salts

Basic Salts - formed in WA-SB titration

- typically contain basic anion
- Anion is conjugate base of WA (e.g. F^{-})
- E.g. NaF Na is neutral $\left(\mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NR}\right)$
$\mathrm{F}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{HF}(a q)+\mathrm{OH}^{-}(a q)$
A basic ion gains H^{+}ions as it forms OH^{-}ions
Salts containing Acidic cations and basic anions
- Compare K_{a} and K_{b} values to tell if its acidic or basic. (If K_{a} is larger, salt is acidic and visa versa.)
- E.g. $\mathrm{NH}_{4} \mathrm{NO}_{2}$

Example Salt Problems

- Is KF an acidic, basic or neutral salt?
- Write the hydrolysis reaction and calculate the pH of a 0.10 M KF solution. $\mathrm{K}_{\mathrm{a}}(\mathrm{HF})=3.5 \times 10^{-4}$

Is $\mathrm{NH}_{4} \mathrm{Cl}$ acidic, basic, or neutral?

- Write the hydrolysis reaction and calculate the pH of a $0.10 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$ solution. $\mathrm{K}_{\mathrm{b}}\left(\mathrm{NH}_{3}\right)=1.8 \times 10^{-5}$

Classify Salts

- Classify the following salts as acidic, basic, or neutral. For acidic or basic salts, write the reaction of hydrolysis.
- KBr
- $\mathrm{Ba}\left(\mathrm{NO}_{2}\right)_{2}$
- LiCN
- $\mathrm{NH}_{4} \mathrm{Cl}$

Strength Hydrohalic acids:

$\mathrm{HF} \ll \mathrm{HCl}<\mathrm{HBr}<\mathrm{HI}$
-Why is HF a weak acid?
-Determined by the strength of $\mathrm{H}-\mathrm{X}$ bond.
$\cdot H-F$ has strongest bonds (F is small so its closer to H)
-Acid Strength \uparrow as Bond Strength \downarrow

| Relative Acid
 Strength | HF | $<\mathrm{HCl}$ | $<$ | HBr | $<$ | HI |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H-X Bond Energy
 $(\mathrm{kJ} / \mathrm{mol})$ | 570 | 432 | | 366 | 298 | |
| $\mathrm{~K}_{\mathrm{a}}$ | 6.3×10^{-4} | 1.3×10^{6} | | 7.9×10^{8} | 2.0×10^{9} | |
| pK_{a} | 3.20 | -6.1 | | -8.9 | -9.3 | |

Factors that Affect Acid Strength

Acid strength is a measure of how completely it ionizes.

$$
\mathrm{HX} \rightarrow \mathbf{H}^{+}+\mathbf{X}^{-}
$$

1) Acid strength \uparrow as strength of $\mathrm{H}-\mathrm{X}$ bond \downarrow

- easier to break weak $\mathrm{H}-\mathrm{X}$ bonds

2) Acid strength \uparrow as polarity of $\mathrm{H}-\mathrm{X}$ bond \uparrow

- Polarity \uparrow when X is more electronegative (easier to ionize)

$$
\delta^{+} \quad \delta^{-}
$$

$$
H-X
$$

Acid Strength \& Bond Polarity

As we move to the right across a row, the acid strength is related to the polarity of the $\mathrm{H}-\mathrm{X}$ bond.
C has the lowest electronegativity, so C-H is least polar and least acidic. F is most electronegative, so $\mathrm{F}-\mathrm{H}$ is most polar, and most acidic (easiest to ionize).

Figure 14.13

Oxoacids - Common Examples

Oxoacids: An oxoacid contains hydrogen, oxygen, and a central nonmetal atom (acids made from polyatomic ions).

Oxoacid Strength in Same Group

1) Oxoacids having different central atoms that are from the same group.

Acid strength \uparrow as electronegativity \uparrow

$\mathbf{C l}$ is more electronegative so $\mathbf{O}-\mathbf{H}$ bond is more polar.
Thus $\mathrm{HOCl}>\mathrm{HOBr}>\mathrm{HOI}$

HOX	Electronegativity of X	K_{a}	pK_{a}
HOCl	3.0	4.0×10^{-8}	7.40
HOBr	2.8	2.8×10^{-9}	8.55
HOI	2.5	3.2×10^{-11}	10.5

[^0]general-chemistry-v1.0/s20-aqueous-acid-base-equilibriums.htm

[^0]: CC-BY-NA-3.0: http://2012books.lardbucket.org/books/principles-of-

