Chapter 14: Acids,Bases and Salts Sections 14.1 – 14.5

CHM152 GCC

OpenSTAX: Chemistry

Why study acids & bases?

Many household substances, including cleaning solutions and food/beverages that we consume, are acids or bases.

In the environment, the pH of rain, water and soil can also have significant effects.

*Acid – base reactions occurring in our body are essential for life. They are also involved in many industrial processes.

Bronsted-Lowry Reaction

Write an equation for the dissociation of HCN in water. Identify the acid, the base, the conjugate acid, and the conjugate base.

Watch charges! Acid loses 1 H+, base gains 1 H+

Lewis Acids and Bases

- Broadest acid base definition since Lewis acids don't have to contain H⁺.
- Looks at electron transfer instead of H⁺ transfer
- Organic CHM primarily uses this AB theory.
- A Lewis base is a an electron pair donor.

A Lewis acid is an electron pair acceptor.

E.g. $H^+ + :NH_3 \rightarrow NH_4^+$

⇒Ammonia donates the electron pair to H⁺ to make the bond; H⁺ accepts the electron pair

Hydronium lons

- HA (aq) \leftrightarrows H⁺ (aq) + A⁻ (aq)
- + H^+ is very reactive and will bond with O in H_2O to form H_3O^+
- H^+ and H_3O^+ are used interchangeably but H_3O^+ is a more accurate representation.

Strong Acids

A strong acid ionizes completely in water to form H_3O^+ ions (H⁺). SA's are strong electrolytes.

- $HNO_{3}(aq) + H_{2}O(I) \rightarrow H_{3}O^{+}(aq) + NO_{3}^{-}(aq)$
- A one way arrow is used since this reaction is complete, all of the HNO₃ molecules break apart to form H₃O⁺ and NO₃⁻ ions.
- These acids have very weak conjugate bases
- For SA, eq lies very far to the right side!

KNOW 7 Strong acids! Memorize these! HCI, HBr, HI, HNO₃, H₂SO₄, HCIO₄, HCIO₃

Strong Bases

A strong base ionizes completely in water to form OH^{-} ions. SB's are strong electrolytes!

SB dissociates in water; it doesn't react with it: **NaOH(aq)** \rightarrow **Na**⁺ (**aq)** + **OH**⁻ (**aq)** (100 % ions) •This reaction also goes to completion \Rightarrow SB's completely dissociate into ions

Strong Bases: These Group 1A & 2A hydroxides LiOH, NaOH, KOH, RbOH, CsOH, Ca(OH)₂, Ba(OH)₂, Sr(OH)₂ Memorize the 8 SB's!

Weak Acids

A <u>weak acid</u> ionizes only to a small extent in H₂O.
WA's are weak electrolytes!

E.g. HCN(aq) + $H_2O(I) \leftrightarrows H_3O^+(aq) + CN^-$ (aq)

- A two-way arrow is used since this reaction is not complete but instead consists of an equilibrium mixture of HCN molecules, H₃O⁺ and CN⁻ ions
- Equilibrium lies to the left since most of the acid molecules have not ionized.
- Common WA's: HF, HNO₂, HCN, H₃PO₄, H₂CO₃, carboxylic acids like CH₃COOH and HCOOH

Weak Base

A weak base ionizes only to a small extent in H_2O . WB's are weak electrolytes!

 $NH_3(aq) + H_2O(l) \leftrightarrows NH_4^+(aq) + OH^-(aq)$

- Equilibrium lies to the left since most of the ammonia molecules have not accepted protons to form NH₄⁺ and OH⁻ ions.
- Common examples of WB's are ammonia and amines (e.g. CH₃NH₂)

Equilibrium Constant for Water Ionization, K_w $H_2O(I) + H_2O(I) \leftrightarrows H_3O^+(aq) + OH^-(aq)$ $K_w = [H_3O^+][OH^-]$ Why is water omitted? $H_2O(I) \leftrightarrows H^+(aq) + OH^-(aq)$ or $K_w = [H^+][OH^-]$ $K_w = 1 \times 10^{-14}$ at 25 °C

Relationship between acidity, [H+], [OH-]	
K _w = [H ⁺][OH ⁻] = 1 x 10 ⁻¹⁴	
Neutral: [H ⁺] = [OH ⁻] = 1.0x10 ⁻⁷ M Acidic: [H ⁺] > [OH ⁻] Basic: [H ⁺] < [OH ⁻]	
Example. $[H_3O^+] = 5.6 \times 10^{-4} \text{ M}$. What is $[OH^-]$? Is this solution acidic or basic?	
15)

	[H ₃ O ⁺] (M)	[OH"] (M)	pН	рОН	Sample Solution	
Figure	10 ¹	10-15	-1	15	-	
14.2	10 ⁰ or 1	10-14	0	14		acidic
14.2	10-1	10 ⁻¹³	1	13	gastric juice	
	10-2	10 ⁻¹²	2	12	lime juice 1 M CH ₃ CO ₂ H (vinegar)	- 4
	10 ⁻³	10 ⁻¹¹	3	ш	stomach acid	
	10-4	10 ⁻¹⁰	4	10	wine orange juice	- 1
	10 ⁻⁵	10 ⁻⁹	5	9	coffee	_
	10-6	10 ⁻⁸	6	8	- rain water	_
	10-7	10 ⁻⁷	7	7	pure water	neutral
	10 ⁻⁸	10 ⁻⁶	8	6	 blood ocean water baking soda 	
	10 ⁻⁹	10 ⁻⁵	9	5		- 1
	10 ⁻¹⁰	10 ⁻⁴	10	4		- 1
	10 ⁻¹¹	10 ⁻³	11	3	- Milk of Magnesia	- 1
	10-12	10 ⁻²	12	2	household ammonia, NH3	
	10 ⁻¹³	10-1	13	1	- bleach	
	10 ⁻¹⁴	10 ⁰ or 1	14	0	1 M NaOH	basic
	10-15	10 ¹	15	-1	4	

pH S	cale
Memorize these equa	tions!
pH = -log [H ₃ O+]	$[H_3O^+] = 10^{-pH}$
pOH = -log [OH ⁻]	[OH ⁻] = 10 ^{-pOH}
$K_w = [H_3O^+][OH^-] = 1x$	10-14
рН + рОН = 14	

pH Sig Figs
2 sig figs
$[H_3O^+] = 5.6 \times 10^{-4} \text{ M}$ 2 decimal places
pH = -log (5.6 x 10⁻⁴) = 3.25
3 related to exponent; tells us acidity
Find [H ₃ O ⁺], pH, & pOH if [OH ⁻] = 9.8×10^{-9} M ² sf
pOH = - log [OH ⁻] = - log 9.8x10 ⁻⁹ = 8.01 (2 dec pl)
pH = 14 – pOH = 14 – 8.01 = 5.99 (2 dec pl)
$[H_3O^*] = 10^{-pH} = 10^{-5.99} = 1.0 \times 10^{-6} M$ (2 sf) 24

Complete the following table				
pН	[H⁺] M	[OH ⁻] M	рОН	A, B, N?
	1.0x10 ⁻⁹			
4.815				
			2.30	

pH of Strong Acids/Bases

Calculate pH of 0.103 M HNO₃ solution. HNO₃(aq) + H₂O(I) \rightarrow H₃O⁺(aq) + NO₃⁻(aq)

Calculate pH of 0.020 M Sr(OH)₂ soln. Sr(OH)₂(aq) \rightarrow Sr²⁺(aq) + 2OH⁻(aq)

Conjugate Acid-Base Pair Trends

- 1. A stronger acid loses its proton more readily than a weaker acid and a stronger base gains a proton more readily than a weaker base.
- 2. The stronger the acid, the weaker its conjugate base. Likewise, the stronger the base, the weaker its conjugate acid.
- 3. Proton transfer reactions proceed from the stronger acid to the stronger base. <u>Thus, the equilibria lies on the side of the weaker acid-base pair.</u>

Strengths of Acids/Bases

e.g. $HS^{-}(aq) + HF(aq) \leftrightarrows H_2S(aq) + F^{-}(aq)$

From Table 14.8

- Which acid is stronger?
- Which base is stronger?
- Which side does equilibria lie on?

Which has higher pH?

- a. 0.10 M HCl or 0.10 M HCOOH
- b. 0.10 M HCl or 0.0010 M HCl
- c. 0.10 M NaOH or 0.10 M Ca(OH)₂

Wea	k Acids; Acid-Ioni	zation Constants	(K _a)			
	Acids	K _a values at 25 °C				
	HF	3.5 x 10 ⁻⁴				
	HNO ₂	4.6 x 10 ⁻⁴				
	HNCO	2.0 x 10 ⁻⁴				
	HCO₂H	1.8 x 10 ⁻⁴				
	CH₃CO₂H	1.8 x 10 ⁻⁵				
	HCIO	3.5 x 10 ⁻⁸				
	HBrO	2.8 x 10 ⁻⁹				
	HCN	4.9 x 10 ⁻¹⁰				
	C ₆ H₅COOH	6.3 x 10 ⁻⁵				
NOTE: The reported constants vary – make sure to use the value provided in the question.						
Additiona	I K _a values found in ap	pendix in the OpenSTA	X book. 32			

Weak Acid Problems

- Set up ICE tables & K_a
- With small K values, assume x will be small to simplify math.

WA problem types:

- Given [HA]_i and K_a, find all equilibrium concentrations and pH
- Given $[HA]_i$ and pH, find all equilibrium concentrations and K_a
- Given [HA]_i and % dissociation, find eq concentrations, pH and K_a

Е

Find K_a for weak acid Find the K_a of a 1.25 M solution of nitrous acid, HNO₂.

The pH of this solution is measured to be 1.62. Write hydrolysis reaction & K_a expression! [H₃O⁺] = 10^{-pH} = (keep 2 sf since pH has 2 dec pl) [NO₂⁻] = [HNO₂] = Plug in x ([H₃O⁺]) since we know value from pH! K_a =

Percent Ionization

% dissociation is the same calculation as checking assumption of a small x.

- % dissociation = ([H₃O⁺]_{eq} / [HA]_i) x 100
- Calculate the percent dissociation from the previous problem.

% dissociation =

• Will the percent dissociated increase or decrease as an acid is diluted?

Polyprotic Acids

$$\begin{split} &H_2C_2O_4(aq) + H_2O(I) \leftrightarrows HC_2O_4^{-}(aq) + H_3O^{+}(aq) \\ &\bullet K_{a1} = [HC_2O_4^{-}][H_3O^{+}] \, / \, [H_2C_2O_4] = 5.9 \ x \ 10^{-2} \end{split}$$

$$\begin{split} HC_2O_4^{-}(aq) \,+\, H_2O(I) &\leftrightarrows C_2O_4^{2-}(aq) \,+\, H_3O^+(aq) \\ &\bullet K_{a2} = [C_2O_4^{2-}][H_3O^+] \,/\, [HC_2O_4^{-}] = 6.4 \times 10^{-5} \end{split}$$

In general, $K_{a1} > K_{a2} > K_{a3} \dots$ Why?

 pH of a polyprotic acid solution primarily arises from [H₃O⁺] formed in the 1st step.

Base	Formula	$\mathbf{K}_{\mathbf{b}}$	$\mathbf{pK}_{\mathbf{b}}$
phosphate ion	PO43-	2.1x10 ⁻²	1.68
dimethylamine	(CH ₃) ₃ NH	5.4x10 ⁻⁴	3.27
methylamine	CH ₃ NH ₂	4.6x10 ⁻⁴	3.34
trimethlyamine	(CH ₃) ₃ N	6.3x10 ⁻⁵	4.20
ammonia	NH ₃	1.8x10 ⁻⁵	4.75
pyridine	C ₅ H ₅ N	1.7x10 ⁻⁹	8.77
aniline	C ₆ H ₅ NH ₂	7.4x10 ⁻¹⁰	9.13

Calculate pH of a Weak BaseCalculate the pH of a 0.50 M dimethylamine($(CH_3)_2NH$) solution. $K_b = 5.4 \times 10^{-4}$ Write reaction, set up K_b , fill in ICE table, solve for x!x = ?Check approximation! Is x< 5% ?</td>Eq []'s: [(CH_3)_2NH_2*] = [OH] = [(CH_3)_2NH] =How do we find pH?

Calculate pH of a Weak Base 1) [OH⁻] = [H₃O⁺] = K_w / [OH⁻] = pH = -log [H₃O⁺] = 2) this is easiest way pOH = -log [OH⁻] = pH = 14 - pOH =

Calculate K_b for a Weak Base

A 0.065 M solution of methylamine, CH_3NH_2 , has a pH of 11.70. What is K_b for CH_3NH_2 ?

Calculate K_b What is the K_b for acetate if K_a is 1.8×10^{-5} for acetic acid? For conjugate pairs: K_a·K_b = 10^{-14}

Properties of Salts

- Acid + Base → Salt + Water
- E.g. HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H₂O(l)
- Salts are ionic products of acid-base reaction.
- · Cation in salt: comes from the base
- Anion in salt: comes from the acid
- Salts can be neutral, acidic, or basic depending on the strength of the acid or base from which they're made.

General Ion Categories

- Acidic ions: Most cations (except 1A & 2A)
 E.g. NH₄⁺, Al³⁺, Cu²⁺
- 2) **Neutral lons**: cations from strong bases and anions from strong acids

Cations: Group 1A & 2A (except Be)

Anions: NO₃⁻, Cl⁻, Br⁻, l⁻, ClO₄⁻, ClO₃⁻ (except HSO₄⁻)

3) **Basic lons**: Most anions derived from weak acids.

E.g. F⁻, CN⁻, CH₃COO⁻ , NO₂⁻

Types of Salts

Basic Salts – formed in WA-SB titration

- typically contain basic anion
- Anion is conjugate base of WA (e.g. F⁻)
- E.g. NaF Na⁺ is neutral (Na⁺ + $H_2O \rightarrow NR$)
 - $F^{-}(aq) + H_2O(l) \rightleftharpoons HF(aq) + OH^{-}(aq)$ A basic ion gains H⁺ ions as it forms OH⁻ ions

Salts containing Acidic cations and basic anions

 Compare K_a and K_b values to tell if its acidic or basic. (If K_a is larger, salt is acidic and visa versa.)
 E.g. NH₄NO₂

Classify Salts

- Classify the following salts as acidic, basic, or neutral. For acidic or basic salts, write the reaction of hydrolysis.
 - ♦ KBr
 - Ba(NO₂)₂
 - LiCN
 - NH₄CI

Factors that Affect Acid Strength

<u>Acid strength</u> is a measure of how completely it ionizes. HX \rightarrow H⁺ + X⁻

Acid strength ↑ as strength of H-X bond ↓
 easier to break weak H-X bonds

2) Acid strength ↑ as polarity of H-X bond ↑
Polarity↑ when X is more electronegative (easier to ionize)

н—х

δ+ δ-

Strength Hydrohalic acids: HF << HCl < HBr < HI

•Why is HF a weak acid?
•Determined by the strength of H-X bond.
•H-F has strongest bonds (F is small so its closer to H)
•Acid Strength ↑ as Bond Strength ↓

Relative Acid Strength	HF	HCI	HBr	
H-X Bond Energy (kJ/mol)	570	432	366	298
K _a	6.3x10 ⁻⁴	1.3x10 ⁶	7.9x10 ⁸	2.0x10 ⁹
pKa	3.20	-6.1	-8.9	-9.3

Oxoacids – Common Examples

Oxoacids: An oxoacid contains hydrogen, oxygen, and a central nonmetal atom (acids made from polyatomic ions).

Oxoacid Strength in Same Group

1) Oxoacids having different central atoms that are from the same group.

Acid strength \uparrow as electronegativity \uparrow

Cl is more electronegative so O—H bond is more polar.

Thus HOCl > HOBr > HOI

HOX	Electronegativity of X	K _a	pK _a
HOCl	3.0	4.0 x 10 ⁻⁸	7.40
HOBr	2.8	2.8 x 10 ⁻⁹	8.55
HOI	2.5	3.2 x 10 ⁻¹¹	10.5

CC-BY-NA-3.0: http://2012books.lardbucket.org/books/principles-ofgeneral-chemistry-v1.0/s20-aqueous-acid-base-equilibriums.htm

