Chapter 15 - Applications of Aqueous Equilibria

GCC CHM152

Common Ion effect

The shift in equilibrium caused by the addition of a substance having an ion in common with the equilibrium mixture.

 Adding a common ion suppresses the ionization of a weak acid or a weak base.

The source of the common ion is typically provided by adding a strong acid, a strong base or a soluble salt to the equilibrium reaction mixture.

Common Ion Concept Problem

Given this reaction: $CH_3CO_2H + H_2O \leftrightarrows H_3O^+ + CH_3CO_2^-$

What happens to the pH of the acetic acid solution if we add $NaCH_3CO_2$?

Common Ion Effect

What is the pH of 0.100 M CH₃CO₂H solution? $K_a = 1.8 \times 10^{-5}$ CH₃CO₂H + H₂O \Rightarrow CH₃CO₂⁻ + H₃O⁺

• **pH = 2.87 for WA** (without a common ion) What is the pH of 0.100 M CH₃CO₂H if we add 0.050 M NaCH₃CO₂? Have WA (CH₃CO₂H) and conj base (CH₃CO₂:)

 $\mathsf{CH}_3\mathsf{CO}_2\mathsf{H} + \mathsf{H}_2\mathsf{O} \leftrightarrows \mathsf{CH}_3\mathsf{CO}_2^- + \mathsf{H}_3\mathsf{O}^+$

I, M		
С, М		
E, M		

• pH = 4.44 for WA w/ common ion (CB);pH [↑] as predicted

Common Ion Problem

*See worksheet key for complete solution What is the pH of 1.00 M HF solution? $K_a = 7.0 \times 10^{-4}$ HF = WA: write WA rxn, set up ICE, solve K_a for x

What is the pH of 1.00 M HF solution after adding 0.500 M NaF? $K_a = 7.0 \times 10^{-4}$ WA = HF, conj base = F⁻ WA eq rxn, have both HA & A⁻! Solve K_a for x

Which are buffer solutions?

Identify the solutions below that would make good buffer solutions :

- HF and NaF
- NH₃ and NH₄CI
- KOH and KF
- CH₃COOH and LiCH₃COO
- NaNO₃ and HNO₃
- NaOH and NaCI

Buffer Capacity

Buffer capacity is the amount of acid or base the buffer can neutralize before there is a significant change in pH.

Buffers work best when [HA] and [A⁻] are equal.

 \Rightarrow For buffers to be effective, the ratio of Base:Acid should be within a factor of 10.

Thus 0.1 < [A⁻]/[HA] < 10

• Buffer capacity is also greater when larger amounts of HA and A⁻ are present.

Buffer Range

Buffers only work within a narrow range: $pH = pK_a \pm 1$

- To make a buffer, select an acid (and salt containing its CB) with a pK_a close to the pH you want (pK_a ± 1), and adjust the [base]/[acid] ratio to obtain the desired pH.
- How would you make a buffer solution with pH = 4.10? What could you use to make this?

	ICE table	Change Table
When to use	Weak acid or base in water	SA or SB is one of the reactants
Units	molarity	moles
Labels	Initial, Change, Equilibrium	Initial, Change, Final
Arrows	t)	>
How to find x	Solve for x at equilibrium	x = L.R. = smallest # of initial moles

1.1.1

pH of Buffer Solution

What is the pH of 500.0 mL of 0.10 M HCO₂H combined with 400.0 mL of 0.20 M NaHCO₂? For HCO₂H, $K_a = 1.8 \times 10^{-4}$ See worksheet key for more detail!

- If given V's for each substance ⇒ calc moles (or diluted M)
- Write WA hydrolysis reaction (HA = HCO_2H)
- Plug amounts into HH equation or K_a expression

Initial mol $HCO_2H =$ Initial mol $HCO_2^- =$

WA rxn:

 $pH = pK_a + log ([A⁻]/[HA])$ pH =

Note: Don't use original M's if V's of each solution are given!

Buffer + HCI

B) What is pH after 20.0 mL of 0.50 M HCl is added to buffer? • Write AB neut: H_3O^+ reacts with A⁺ to form HA so A⁺ \downarrow and HA↑

• calc moles, set up change table, plug final moles into HH!

Initial mol HCI = (0.0200 L) (0.50 M) = 0.010 mol = LR

AB Neut rxn:	H ₃ O+ +	HCO ₂ -	→ H ₂ O +	HCO ₂ H
Initial moles				
Change in moles				
Final moles				

 $pH = pK_a + log ([A^-]/[HA])$ (initially pH = 3.95 for part A) pH =

- pH \downarrow slightly when SA added to buffer
- If same amount of SA was added to water, pH would drop from 7 to 2!

Strong Acid-Strong Base

Draw 4 beakers.

- 1) Draw 2 moles HCI. (How do we draw SA?)
- 2) Draw what happens when 1 mole NaOH is added.
- 3) Draw what happens when 2 moles NaOH are added.
- 4) Draw what happens when 3 moles NaOH are added.

SA-SB Titration Problem pH's for titration of 20.00 mL of 0.200 M HCl by 0.100 M NaOH. SA SB AB neut reaction: HCl + NaOH → NaCl + H₂O a) 0 mL NaOH, just have SA solution For SA: [H₃O⁺] = [HCl] = 0.200 M • pH = -log (0.200) = <u>0.700</u> initial pH of SA b) 5.00 mL NaOH, Before eq. pt so have excess SA • Calculate initial moles of acid & base, • Subtract LR to find final moles of excess acid • [SA] = [H₃O⁺] = final moles SA/total volume • [H₃O⁺] = 3.50 mmol H₃O⁺/ 25.00 mL = 0.140 M • pH = -log (0.140) = <u>0.854</u> (low pH due to excess SA) See worksheet key for more detail!

- [SB] = [OH⁻] = final moles of base/total volume
- [OH⁻] = 1.00 mmol OH⁻/ 70.00 mL = 0.01429 M
- pOH = -log (0.01429) = 1.845
- <u>pH = 12.155</u> (high pH due to excess SB)

Weak Acid-Strong Base Draw 4 beakers. 1) Draw 2 moles weak acid. (Assume WA is not dissociated!) 2) Draw what happens when 1 mole KOH is added. 3) Draw what happens when 2 moles KOH are added. 4) Draw what happens when 3 moles KOH are added.

WA-SB Titration before Eq Pt

50.00 mL of 0.100 M acetic acid titrated by 0.150 M KOH. $K_a = 1.8 \times 10^{-5}$

General steps:

- Write Neut rxn: CH₃COOH + OH \rightarrow H₂O + CH₃COOH
- Calc moles and use change table to determine what remains after neutralization!
- B) 10.00 mL KOH (pH before eq pt = buffer problem)
 - Both HA and A⁻ are present ⇒ <u>buffer region</u>
 - Final moles HA = initial moles HA moles base added
 - Final moles A⁻ formed = moles base added
 - Plug final moles (or final M's) into HH equation
 - DO NOT USE HH EQUATION FOR ANY OTHER REGION OF WA-SB TITRATION CURVE!

WA-SB Titration at Eq Pt

50.00 mL of 0.100 M acetic acid titrated by 0.150 M KOH • V of KOH at eq pt = 33.33 mL

- c) at the eq. pt.; basic salt is present = WB problem!
 - At the eq pt all of the SB and WA have reacted to produce a basic salt. (Remember the anion for a WA is not neutral – its basic!)
 - Calculate [A-] = moles conj base/ total volume
 - Conj Base (A⁻) reacts with water: A⁻ + H₂O \Rightarrow HA + OH⁻)
 - Set up ICE table
 - find $K_b = K_w / K_a$;
 - Solve $K_b = x^2/[A^-]$ for x, where $x = [OH^-]$
 - calculate pOH and convert to pH

pH = 8.76

*See titration worksheet key for complete solution!

WA-SB Titration after Eq Pt
50.00 mL of 0.100 M acetic acid titrated by 0.150 M KOH.
d) 50.00 mL KOH (After eq pt: excess OH' from SB)
PH is determined primarily from excess SB.
We can neglect the hydrolysis of conjugate base since it would contribute a lot less OH- compared to the SB.
pH calc after eq pt is same for SA-SB and WA-SB!
[OH-] = final moles OH-/ total volume mmol OH- = 7.50 mmol – 5.00 mmol = 2.50 mmol OH- total mL = 50.00 + 50.00 = 100.00 mL [OH-] = 2.50 mmol/100.00 mL = 0.0250 M OH- pOH = -log (0.0250 M) = 1.602 pH = 14 - 1.602 = 12.398

Indicators for Acid-Base Reactions				
BLE 17.3 Some C	Common Acid-Base	e Indicators		
Color				
Indicator	In acid	In base	pH range	
Thymol blue	Red	Yellow	1.2-2.8	
Bromophenol blue	Yellow	Bluish purple	3.0-4.6	
Methyl orange	Orange	Yellow	3.1-4.4	
Methyl red	Red	Yellow	4.2-6.3	
Chlorophenol blue	Yellow	Red	4.8-6.4	
Bromothymol blue	Yellow	Blue	6.0-7.6	
Cresol red	Yellow	Red	7.2-8.8	
Phenolphthalein	Colorless	Reddish pink	8.3-10.0	

Solubility Equilibria

- Some combinations of ions form solid precipitates in aqueous solutions. (Refer to Solubility rules)
- These "insoluble" salts dissolve to a small extent and form a saturated solution.
- The undissolved solid and the dissociated ions in solution establish an equilibrium reaction.
- $\clubsuit\ K_{sp}$ is the equilibrium constant for the dissocation of an insoluble salt.

important biological examples:

- tooth decay tooth enamel dissolves in acidic soln
- formation of kidney stones salts precipitate in kidney

Example. The dissolution of AgBr

 $\begin{array}{rll} AgBr(s)\leftrightarrows Ag^{+}(aq) &+ Br^{-}(aq) \\ K_{sp} &= [Ag^{+}][Br^{-}] \end{array}$

- K_{sp} is the solubility product constant its the equilibrium constant for insoluble salts
- It is a measure of how soluble a salt is in H₂O
- \Rightarrow For salts with the same # of ions, the smaller the $K_{s \upsilon},$ the less soluble the salt.

Compound	Dissolution equilibrium	К.,
Aluminum hydroxide	$Al(OH)_{i}(x) = Al^{i+}(ag) + 3OH^{i}(ag)$	1.8×10^{-9}
Barium carbonate	$BaCO_{i}(s) \longrightarrow Ba^{1+}(ag) + CO_{i}^{2}(ag)$	8.1×10^{-9}
Barium fluoride	$BaF_{*}(x) \longrightarrow Ba^{2+}(aq) + 2F^{*}(aq)$	1.7×10^{-6}
Barium sulfate	$BaSO_s(s) \longrightarrow Ba^{2s}(aq) + SO_s^{2s}(aq)$	1.1×10^{-10}
Bismuth sulfide	$Bi.S.(x) \longrightarrow 2Bi^{1+}(ag) + 3S^{2+}(ag)$	1.6×10^{-71}
Cadmium sulfide	$CdS(s) \longrightarrow Cd^{2s}(aq) + S^{2s}(aq)$	$8.0 imes 10^{-24}$
Calcium carbonate	$CaCO_i(s) \longrightarrow Ca^{1+}(aq) + CO^{1-}_i(aq)$	8.7×10^{-9}
Calcium fluoride	$CaF_{i}(x) \longrightarrow Ca^{1+}(aq) + 2F(aq)$	$4.0 imes 10^{-11}$
Calcium hydroxide	$Ca(OH).(x) = Ca^{1+}(ag) + 2OH(ag)$	8.0×10^{-6}
Calcium phosphate	$Ca_{*}(PO_{*})_{*}(x) = 3Ca^{2+}(ag) + 2PO_{*}^{2+}(ag)$	1.2×10^{-28}
Calcium sulfate	$CaSO_{i}(s) \longrightarrow Ca^{2+}(aq) + SO_{i}^{2}(aq)$	2.4×10^{-5}
Chromium(III) hydroxide	$Cr(OH)_{(x)} \longrightarrow Cr^{3+}(aq) + 3OH^{-}(aq)$	3.0×10^{-29}
Cobalt(II) sulfide	$CoS(x) \longrightarrow Co^{1+}(aq) + S^{1-}(aq)$	$4.0 imes 10^{-21}$
Copper(I) bromide	$CuBr(x) \longrightarrow Cu^{+}(aq) + Br^{-}(aq)$	4.2×10^{-6}
Copper(I) iodide	$Cul(s) \longrightarrow Cu^*(aq) + \Gamma(aq)$	$5.1 imes 10^{-0}$
Copper(II) hydroxide	$Cu(OH)_{(x)} = Cu^{2*}(aq) + 2OH(aq)$	2.2×10^{-28}
Copper(II) sulfide	$CuS(s) \longrightarrow Cu^{2+}(aq) + S^{2-}(aq)$	6.0×10^{-11}
Iron(II) hydroxide	$Fe(OH)_2(s) \longrightarrow Fe^{2+}(aq) + 2OH(aq)$	1.6×10^{-14}
Iron(III) hydroxide	$Fe(OH)_{1}(s) \longrightarrow Fe^{3\gamma}(aq) + 3OH^{\gamma}(aq)$	1.1×10^{-N}
Iron(III) phosphate	$FePO_4(s) \longrightarrow Fe^{3s}(aq) + PO_4^{3s}(aq)$	1.3×10^{-21}
Iron(II) sulfide	$FeS(x) = Fe^{2x}(aq) + S^{2x}(aq)$	6.0×10^{-10}
Lead(II) bromide	$PbBr_{r}(x) \longrightarrow Pb^{2+}(aq) + 2Br'(aq)$	6.6 × 10 *
Lead(II) carbonate	$PbCO_{\tau}(x) \longrightarrow Pb^{2\tau}(aq) + CO_{\tau}^{2\tau}(aq)$	3.3×10^{-14}
Lead(II) chloride	$PbCl_s(s) \longrightarrow Pb^{2s}(aq) + 2Cl_s(aq)$	2.4×10^{-4}
Lead(II) chromate	$PbCrO_{i}(y) \longrightarrow Pb^{2v}(aq) + CrO_{i}^{2v}(aq)$	2.0×10^{-14}
Lead(II) fluoride	$PbF_{i}(x) \longrightarrow Pb^{2+}(aq) + 2F^{i}(aq)$	$4.0 imes 10^{-6}$
Lead(II) iodide	$PbL(x) \longrightarrow Pb^{2n}(aq) + 2\Gamma(aq)$	1.4×10^{-8}
Lead(II) sulfate	$PhSO_{i}(x) \longrightarrow Ph^{2*}(ag) + SO_{i}^{2*}(ag)$	1.8×10^{-6}

Write the solubility equilibrium reactions and K_{sp} expressions for $Sr_3(PO_4)_2$.

Solubility

- K_{sp} can be used to calculate the solubility
- Solubility (molar solubility) = molar concentration of dissolved salt; ion concentrations are related to this by their coefficients.
 - Solubility can also be expressed in g/L

Example:

 $Fe(OH)_3$: $[Fe^{3+}] = x [OH^-] = 3x K_{sp} = (x)(3x)^3$

Solubility/K_{sp} Practice

- 1. K_{sp} for AgBr is 7.7 x 10⁻¹³. Calculate the molar and gram solubility.
- 2. If a saturated solution prepared by dissolving CaF₂ in water has [Ca²⁺] = 3.3×10^{-4} M, what is the value of K_{sp}?
- 3. K_{sp} for Al(OH)₃ is 1.9 x 10⁻³³. Calculate the molar solubility.
- 4. The solubility of Ca(OH)₂ is 0.233 g/L. Calculate K_{sp} .
- Refer to solubility worksheet key!

Does a precipitate form?

We can calculate the reaction quotient Q to predict if precipitation will occur

- Q > K_{sp}, eq shifts ← (toward s) ppt forms
 There are excess ions in solution that will precipitate out to form a solid
- $Q = K_{sp}$, Saturated solution, no ppt
 - solution holds maximum amount of dissolved salt
- Q < K_{sp}, no ppt; eq shifts → (towards ions)
 Unsaturated solution, the ion []'s are not high enough to form a solid

Precipitation of Ionic Cmpds

Will a precipitate form when 0.150 L of 0.10 M lead (II) nitrate and 0.100 L of 0.20 M sodium chloride are mixed? For PbCl₂, $K_{sp} = 1.2x10^{-5}$ see worksheet key

Common Ion Effect

• Solubility is decreased when a common ion is added to a solution containing an insoluble salt!

Example: $AgCl_{(s)} \leftrightarrows Ag^+_{(aq)} + Cl^-_{(aq)}$

If we add NaCl to a AgCl solution, [Cl⁻] [↑], eq shifts left As eq shifts left, some AgCl precipitates out of solution, **Thus, adding a common ion decreases the solubility!**

Common Ion Effect

What will happen if solid NaF is added to a solution of saturated SrF_2 ?

 $SrF_2(s) \leftrightarrows Sr^{2+}(aq) + 2F^{-}(aq)$

- a) Calculate the molar solubility of SrF_2 in pure water (K_{sp} = 4.3 x 10⁻⁹).
- b) Calculate the molar solubility of $\rm SrF_2$ in 0.010 M NaF.

Effect of pH on Solubility

Addition of an acid can increase the solubility of an insoluble basic salt.

E.g. $CaF_2(s) \rightleftharpoons Ca^{2+}(aq) + 2F^{-}(aq)$

Add strong acid (e.g. HCI) provides H₃O⁺ ions:

 $H_3O^+ + F^- \rightarrow HF + H_2O$

• Adding H⁺ causes [F⁻] \downarrow , equilibrium shifts right to form more F^- & solubility of CaF₂¹.

pH and solubility

E.g. For the following salts, predict whether the salt will dissolve in an acidic solution.

 $K_1 = 1.7 \times 10^{-10}$

- A. AgBr
- B. CaCO₃ _____
- C. PbCl₂ _____
- D. BaS _____

Qualitative Analysis

- Skipping Selective Precipitation
- Qualitative analysis is used to identify unknown ions in a solution.
 - 152LL should read this section before qual lab!
- Each ion can be precipitated out by addition of selective reagents.
- Purely qualitative research, like solving a puzzle.