

Common Ion Concept Problem

Given this reaction:
$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}$
What happens to the pH of the acetic acid solution if we add $\mathrm{NaCH}_{3} \mathrm{CO}_{2}$?

Common Ion Problem

*See worksheet key for complete solution What is the pH of 1.00 M HF solution? $\mathrm{K}_{\mathrm{a}}=7.0 \times 10^{-4}$ HF = WA: write WA rxn, set up ICE, solve K_{a} for x

What is the pH of 1.00 M HF solution after adding 0.500 M NaF ? $\mathrm{K}_{\mathrm{a}}=7.0 \times 10^{-4}$
$W A=H F$, conj base $=F^{-}$
WA eq rxn, have both HA \& A^{-}! Solve K_{a} for x

Common Ion effect

The shift in equilibrium caused by the addition of a substance having an ion in common with the equilibrium mixture.

- Adding a common ion suppresses the ionization of a weak acid or a weak base.

The source of the common ion is typically provided by adding a strong acid, a strong base or a soluble salt to the equilibrium reaction mixture.

Common Ion Effect

What is the pH of $0.100 \mathrm{M} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ solution? $\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}$
$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{CH}_{3} \mathrm{CO}_{2}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$

- $\mathrm{pH}=2.87$ for WA (without a common ion)

What is the pH of $0.100 \mathrm{M} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ if we add 0.050 M $\mathrm{NaCH}_{3} \mathrm{CO}_{2}$? Have WA $\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right)$ and conj base $\left(\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}\right)$

- $\mathrm{pH}=4.44$ for WA w/ common ion (CB); $\mathrm{pH} \uparrow$ as predicted

Buffer Solution

A solution that resists changes in pH when a small amount of acid or base is added.
-Buffers are used to control pH
e.g. biological buffers maintain the pH of all body fluids

Best buffer systems consist of either
a) a weak acid and its conjugate base e.g. $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ and $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
b) a weak base and its conjugate acid e.g. NH_{3} and $\mathrm{NH}_{4} \mathrm{Cl}$

Which are buffer solutions?

Identify the solutions below that would make good buffer solutions :

- HF and NaF
- NH_{3} and $\mathrm{NH}_{4} \mathrm{Cl}$
- KOH and KF
- $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{LiCH}_{3} \mathrm{COO}$
- NaNO_{3} and HNO_{3}
- NaOH and NaCl

How Buffer Solution works

Buffer Range

Buffers only work within a narrow range:

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}} \pm 1
$$

- To make a buffer, select an acid (and salt containing its CB) with a pK_{a} close to the pH you want ($\mathrm{pK}_{\mathrm{a}} \pm 1$), and adjust the [base]/[acid] ratio to obtain the desired pH .
- How would you make a buffer solution with $\mathrm{pH}=$ 4.10? What could you use to make this?

Henderson-Hasselbalch Equation

- pH of a buffer solution can be calculated from the Henderson Hasselbalch Equation:

$$
\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \frac{\text { [conjugate base] }}{[\text { weak acid }]}
$$

- Only use this for buffers where you have a conjugate acid/base pair!
- Can use moles or M - depending on given info $\Rightarrow V$ units cancel since it's a ratio of [base]/[acid]!

ICE vs Change Tables

	ICE table	Change Table
When to use	Weak acid or base in water	SA or SB is one of the reactants
Units	molarity	moles
Labels	Initial, Change, Equilibrium	Initial, Change, Final
Arrows	\leftrightarrows	\rightarrow
How to find \mathbf{x}	Solve for x at equilibrium	$\mathrm{x}=$ L.R. $=$ smallest \# of initial moles

pH of Buffer Solution

What is the pH of 500.0 mL of $0.10 \mathrm{M} \mathrm{HCO}_{2} \mathrm{H}$ combined with 400.0 mL of $0.20 \mathrm{M} \mathrm{NaHCO}_{2}$? For $\mathrm{HCO}_{2} \mathrm{H}, \mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-4}$ See worksheet key for more detail!

- If given V's for each substance \Rightarrow calc moles (or diluted M)
- Write WA hydrolysis reaction $\left(\mathrm{HA}=\mathrm{HCO}_{2} \mathrm{H}\right)$
- Plug amounts into HH equation or K_{a} expression

Initial mol $\mathrm{HCO}_{2} \mathrm{H}=$
Initial $\mathrm{mol} \mathrm{HCO}_{2}^{-}=$
WA rxn:
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]\right)$
$\mathrm{pH}=$
Note: Don't use original M's if V's of each solution are given! ${ }^{13}$

Buffer Solutions + NaOH

C) What is pH after 20.0 mL of 0.50 M NaOH is added to buffer? - Write AB rxn: OH- reacts with HA to form \mathbf{A}^{-}so HA \downarrow and $A^{-} \uparrow$ - calc moles, set up change table, plug final moles into HH ! Initial $\mathrm{mol} \mathrm{OH}^{-}=(0.0200 \mathrm{~L})(0.50 \mathrm{M})=0.010 \mathrm{~mol} \mathrm{OH}^{-}=\mathrm{LR}$ $A B$ Neut rxn: $\mathrm{OH}^{-}+\mathrm{HCO}_{2} \mathrm{H} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{HCO}_{2}{ }^{-}$

$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log ([\mathrm{A}-] /[\mathrm{HA}])$ (initially $\mathrm{pH}=3.95$ for part A)
pH =
pH \uparrow slightly when SB added to buffer

- If same amount of SB was added to water, pH would rise from 7 to 12 ! ${ }^{15}$

Buffer + HCl

B) What is pH after 20.0 mL of 0.50 M HCl is added to buffer?

- Write AB neut: $\mathrm{H}_{3} \mathrm{O}^{+}$reacts with A^{-}to form HA so $\mathrm{A}^{-} \downarrow$ and $\mathrm{HA} \uparrow$
- calc moles, set up change table, plug final moles into HH!

Initial $\mathrm{mol} \mathrm{HCl}=(0.0200 \mathrm{~L})(0.50 \mathrm{M})=0.010 \mathrm{~mol}=\mathrm{LR}$
AB Neut rxn: $\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HCO}_{2}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{HCO}_{2} \mathrm{H}$

$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log ([\mathrm{A}] /[\mathrm{HA}])$ (initially $\mathrm{pH}=3.95$ for part A$)$
$\mathrm{pH}=$

- $\mathrm{pH} \downarrow$ slightly when SA added to buffer
- If same amount of SA was added to water, pH would drop from 7 to 2 !

Group Quiz 13

Consider a buffer solution prepared from HOCl and NaOCl .
A) Write the net ionic equation for the neutralization reaction that occurs when NaOH is added to this buffer.
B) Will the pH stay the same, increase or decrease when NaOH is added?
C) Write the net ionic equation for the neutralization reaction that occurs when $\mathrm{HI}(\mathrm{aq})$ is added to this buffer.
D) Will the $[\mathrm{HOCl}]$ increase, decrease or stay the same when $\mathrm{HI}(\mathrm{aq})$ is added?
E) Will the [OCl^{-}] increase, decrease or stay the same when $\mathrm{HI}(\mathrm{aq})$ is added?

pH Titration Curves

4 key regions on a titration curve

- Initial solution (before titrant is added)
- Before the equivalence point
- At the equivalence point
- After the equivalence point

For Titration problems may use mmol :
1 mole $=1000$ mmoles
$M=\frac{\mathrm{mol}}{\mathrm{L}}=\frac{1000 \mathrm{mmol}}{1000 \mathrm{~mL}}=\frac{\mathrm{mmol}}{\mathrm{mL}}$

Strong Acid- Strong Base Titration

Strong Acid-Strong Base

Draw 4 beakers.

1) Draw 2 moles HCl . (How do we draw SA?)
2) Draw what happens when 1 mole NaOH is added.
3) Draw what happens when 2 moles NaOH are added.
4) Draw what happens when 3 moles NaOH are added.

SA-SB Titration Problem

pH 's for titration of 20.00 mL of 0.200 M HCl by 0.100 M NaOH .
$A B$ neut reaction: $\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
a) 0 mL NaOH , just have SA solution

For SA: $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=[\mathrm{HCl}]=0.200 \mathrm{M}$

- $\mathrm{pH}=-\log (0.200)=\underline{0.700}$ initial pH of SA
b) 5.00 mL NaOH , Before eq. pt so have excess SA
- Calculate initial moles of acid \& base,
- Subtract LR to find final moles of excess acid
- $[\mathrm{SA}]=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=$final moles SA/total volume
- $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=3.50 \mathrm{mmol} \mathrm{H} \mathrm{H}_{3} \mathrm{O}^{+} 25.00 \mathrm{~mL}=0.140 \mathrm{M}$
- $\mathrm{pH}=-\log (0.140)=0.854$ (low pH due to excess SA)

See worksheet key for more detail!

Weak Acid- Strong Base Titration

WA-SB Titration Problem

50.00 mL of 0.100 M acetic acid titrated by 0.150 M KOH . $\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5} \quad \mathrm{WA} \mathrm{SB}$
A) 0 mL of base; initial pH of $\mathrm{WA}=$ WA problem!

- Must set up ICE and $\mathrm{K}_{\mathrm{a}}, \mathrm{x}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$\mathrm{CH}_{3} \mathrm{COOH}(a q)+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})$

I, M	0.100		0	0
C, M	-x		+x	+x
E, M	$0.100-\mathrm{x}$		x	x

$$
\begin{gathered}
K_{a}=\frac{x^{2}}{[H A]} \quad \mathrm{x}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\sqrt{0.100 \times 1.8 \times 10^{-5}}=1.34 \times 10^{-3} \mathrm{M} \\
\mathrm{pH} \equiv \\
2.87 \text { (initial } \mathrm{pH} \text { for WA solution) }
\end{gathered}
$$

WA-SB Titration before Eq Pt

50.00 mL of 0.100 M acetic acid titrated by 0.150 M KOH . $K_{\mathrm{a}}=1.8 \times 10^{-5}$
General steps:

- Write Neut rxn: $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3} \mathrm{COOH}$
- Calc moles and use change table to determine what remains after neutralization!
B) 10.00 mL KOH (pH before eq $\mathrm{pt}=$ buffer problem)
- Both HA and A - are present \Rightarrow buffer region
- Final moles HA = initial moles HA - moles base added
- Final moles A^{-}formed = moles base added
- Plug final moles (or final M's) into HH equation
- DO NOT USE HH EQUATION FOR ANY OTHER REGION OF WA-SB TITRATION CURVE!

WA-SB Titration after Eq Pt

50.00 mL of 0.100 M acetic acid titrated by 0.150 M KOH .
d) 50.00 mL KOH (After eq pt: excess $\mathbf{O H}$ from SB)

- pH is determined primarily from excess SB.
- We can neglect the hydrolysis of conjugate base since it would contribute a lot less OH - compared to the SB.
- pH calc after eq pt is same for SA-SB and WA-SB!
- $\left[\mathrm{OH}^{-}\right]=$final moles $\mathrm{OH}^{-} /$total volume
$\mathrm{mmol} \mathrm{OH}^{-}=7.50 \mathrm{mmol}^{-2.00} \mathrm{mmol}^{2}=2.50 \mathrm{mmol} \mathrm{OH}^{-}$ total $\mathrm{mL}=50.00+50.00=100.00 \mathrm{~mL}$
$[\mathrm{OH}]=2.50 \mathrm{mmol} / 100.00 \mathrm{~mL}=0.0250 \mathrm{M} \mathrm{OH}$
$\mathrm{pOH}=-\log (0.0250 \mathrm{M})=1.602$
$\mathrm{pH}=14-1.602=12.398$

WA-SB Titration at Eq Pt

50.00 mL of 0.100 M acetic acid titrated by 0.150 M KOH

- V of KOH at eq $\mathrm{pt}=33.33 \mathrm{~mL}$
c) at the eq. pt.; basic salt is present $=\mathrm{WB}$ problem!
- At the eq pt all of the SB and WA have reacted to produce a basic salt. (Remember the anion for a WA is not neutral - its basic!
- Calculate $[A \cdot]=$ moles conj base/ total volume
- Conj Base (A^{-}) reacts with water: $\mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{HA}+\mathrm{OH}^{-}$)
- Set up ICE table
- find $\mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a}}$;
- Solve $\mathrm{K}_{\mathrm{b}}=\mathrm{x}^{2} /[\mathrm{A}-]$ for x , where $\mathrm{x}=\left[\mathrm{OH}^{-}\right]$
- calculate pOH and convert to pH
pH $=8.76$
*See titration worksheet key for complete solution! $\quad 26$

Half Equivalence Point
- Special Region exists when Acid is half neutralized:
- Half of the acid remains and the other half has been
converted into its conjugate base
- At the $1 / 2$ eq pt, moles HA remaining = moles A - formed
- Thus, $[\mathrm{HA}]=\left[\mathrm{A}^{-}\right]$
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log ([\mathrm{A}] /[\mathrm{HA}])$
at $1 / 2$ eq pt: $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}$

End Point for Acid-Base Titrations

The endpoint in a titration can be visualized with the use of an acid-base indicator. (The acid and conjugate base forms of the indicator have different colors)
$\mathrm{HIn}(a q) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{In}^{-}(a q)$
The endpoint of a titration is The point at which the color of the indicator changes.

Indicators for Acid-Base Reactions

Color							
TABLE 17.3	Some Common Acid-Base Indicators						
	Indicator				In acid	In base	pH range
Thymol blue	Red	Yellow	$1.2-2.8$				
Bromophenol blue	Yellow	Bluish purple	$3.0-4.6$				
Methyl orange	Orange	Yellow	$3.1-4.4$				
Methyl red	Red	Yellow	$4.2-6.3$				
Chlorophenol blue	Yellow	Red	$4.8-6.4$				
Bromothymol blue	Yellow	Blue	$6.0-7.6$				
Cresol red	Yellow	Red	$7.2-8.8$				
Phenolphthalein	Colorless	Reddish pink	$8.3-10.0$				

Example. The dissolution of AgBr
$\begin{gathered} \mathrm{AgBr}(\mathrm{~s}) \leftrightarrows \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq}) \\ \mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Br}^{-}\right] \end{gathered}$ K_{sp} is the solubility product constant - its the equilibrium constant for insoluble salts - It is a measure of how soluble a salt is in $\mathrm{H}_{2} \mathrm{O}$ \Rightarrow For salts with the same \# of ions, the smaller the K_{sp}, the less soluble the salt.

Write the solubility equilibrium reactions and $\mathrm{K}_{\text {sp }}$ expressions for $\mathrm{Sr}_{3}\left(\mathrm{PO}_{4}\right)_{2}$.

Solubility Equilibria

* Some combinations of ions form solid precipitates in aqueous solutions. (Refer to Solubility rules)
* These "insoluble" salts dissolve to a small extent and form a saturated solution.
* The undissolved solid and the dissociated ions in solution establish an equilibrium reaction.
* K_{sp} is the equilibrium constant for the dissocation of an insoluble salt.
important biological examples:
- tooth decay - tooth enamel dissolves in acidic soln
- formation of kidney stones - salts precipitate in kidney

TABLE 17.4 Solubility	a Slighty Soluble lonic Compxumds and	
Compound	Dissolution equilibrium	κ_{0}
Aluninum hydroxide		1.8×10^{-10}
Barium catomate		8.1×10^{4}
Barium flowide		$1.7 \times 10^{-}$
		$1.1 \times 10^{\text {"7 }}$
Bismuth sullide	$\mathrm{Bi}\left(\mathrm{S},(0) \rightleftharpoons 2 \mathrm{~B}^{\prime \prime}(\mathrm{aq})+33^{\circ}(\mathrm{aq})\right.$	1.6×10^{17}
Cadmium mulfide		8.0×10^{7}
Calcium catbonate		$8.7 \times 10^{-}$
Calcium fuonide		4.0×10^{10}
Calcium hydrovide	$\mathrm{CaOH})_{,}(0) \Longrightarrow \mathrm{Ca}^{4}(\mathrm{Laq})+2 \mathrm{OH}(\mathrm{aq})$	$8.0 \times 10^{*}$
Calcium plouphate		1.2×100
Calcium nultate		$24 \times 10^{-}$
Chromium(mis hydruite	Crohl, () $\rightleftharpoons \mathrm{Cr}^{\prime \prime}(\mathrm{aQ})+3 \mathrm{OH}(\mathrm{aq})$	$3.0 \times 10^{=}$
Cobata(1) walide	$\cos \left(\underline{)}\right.$ ¢ $\Longleftarrow \mathrm{cos}^{2}(\mathrm{tap})+\mathrm{S}^{2}(\mathrm{aq})$	$4.0 \times 10^{\prime \prime}$
Copper(i) bromide		$4.2 \times 10^{-}$
Capper(i) idide		5.1×10^{41}
	$\mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{Cr}^{\prime}(\mathrm{aq})+2 \mathrm{OH}(\mathrm{aq})$	$2.2 \times 10^{*}$
Coppere(il) mulide	CuS()$^{\prime} \rightleftharpoons \mathrm{Cr}^{2}(\mathrm{meq})+\mathrm{S}^{(}(\mathrm{aq})$	$60 \times 10^{\prime \prime}$
troe(li) tydroxide	$\mathrm{Fe}(\mathrm{OH})(0) \rightleftharpoons \mathrm{Fe}^{2}($ aqe $)+2 \mathrm{OH}(\mathrm{aq})$	$1.6 \times 10^{\prime \prime}$
Iron(II) hydimxide	$\mathrm{Fr}(\mathrm{OH}),(0) \Longrightarrow \mathrm{Fe}^{\prime \prime}($ aqu $)+3 \mathrm{OH}(\mathrm{aq})$	$1.1 \times 10^{-}$
tron(ili) phomphate	$\mathrm{FePO},(\mathrm{s}) \Longrightarrow \mathrm{Fe}^{\prime \prime}(a q)+\mathrm{PO}_{4}^{\prime}(\mathrm{aq})$	13×10^{17}
Iroo(li) sulfide	FeS()$\Longrightarrow \mathrm{Fe}^{\prime}(\mathrm{aq})+\mathrm{S}^{(}(\mathrm{aq})$	$6.0 \times 10^{\prime \prime}$
Leadili bromide	$\mathrm{PbBr}_{2}(0) \Longrightarrow \mathrm{Pb}^{\prime}(\mathrm{aq})+2 \mathrm{Br}(\mathrm{aq})$	$6.6 \times 10^{-}$
Leadili cartonate		33×10^{44}
Leadili) chloride	$\mathrm{PbCl},(0) \Longrightarrow \mathrm{Pb}^{\prime}(\mathrm{aq})+2 \mathrm{CCT}(\mathrm{aq})$	$2.4 \times 10^{-}$
Leadilic chromate	$\mathrm{PbCO},(0) \Longrightarrow \mathrm{Pb}^{3}(\mathrm{aq})+\mathrm{COO}_{4}^{\prime}(\mathrm{aq})$	$20 \times 10^{\text {"4 }}$
Leadili) tuoride	$\mathrm{PbF},(0) \rightleftharpoons \mathrm{Pb}^{2}(\mathrm{aq})+2 \mathrm{~F}(\mathrm{aq})$	40×10^{-7}
Lead(til) iodiste		$14 \times 10^{*}$
Leadili) sulfate	$\left.\mathrm{PrSO}_{(0,0}(0) \mathrm{Pb}^{\prime}(\mathrm{am})+\mathrm{SO}_{4}^{(\mathrm{am}}\right)$	$1.8 \times 10^{*}$

- $\mathbf{K}_{\text {sp }}$ can be used to calculate the solubility
- Solubility (molar solubility) = molar concentration of dissolved salt; ion concentrations are related to this by their coefficients.
- Solubility can also be expressed in g/L

Example:
$\mathrm{Fe}(\mathrm{OH})_{3}:\left[\mathrm{Fe}^{3+}\right]=\mathrm{x}\left[\mathrm{OH}^{-}\right]=3 \mathrm{x} \quad \mathrm{K}_{\mathrm{sp}}=(\mathrm{x})(3 \mathrm{x})^{3}$

Solubility/K ${ }_{\text {sp }}$ Practice

1. K_{sp} for AgBr is 7.7×10^{-13}. Calculate the molar and gram solubility.
2. If a saturated solution prepared by dissolving CaF_{2} in water has $\left[\mathrm{Ca}^{2+}\right]=3.3 \times 10^{-4} \mathrm{M}$, what is the value of K_{sp} ?
3. K_{sp} for $\mathrm{Al}(\mathrm{OH})_{3}$ is 1.9×10^{-33}. Calculate the molar solubility.
4. The solubility of $\mathrm{Ca}(\mathrm{OH})_{2}$ is $0.233 \mathrm{~g} / \mathrm{L}$. Calculate K_{sp}.
Refer to solubility worksheet key!

Calculate solubility from $K_{\text {sp }}$
The $K_{\text {sp }}$ of silver bromide is 7.7×10^{-13}. Calculate the molar solubility. (Note: book uses " s " instead of x in ICE table.)
$\operatorname{AgBr}(s) \rightleftharpoons \mathrm{Ag}^{+}(a q)+\operatorname{Br}(a q)$

$I(M)$	0	0
(M)	$+x$	$+x$
$E(M)$	x	x

$K_{\text {sp }}=\left[\mathrm{Ag}^{+}\right][\mathrm{Br}-]=7.7 \times 10^{-13}$

$$
7.7 \times 10^{-13}=(x)(x)
$$

$$
x=8.8 \times 10^{-7} \mathrm{M}
$$

$\frac{8.8 \times 10^{-7} \mathrm{~mol} \mathrm{AgBr}}{1 \mathrm{~L}} \times \frac{187.8 \mathrm{~g}}{1 \mathrm{~mol} \mathrm{AgBr}}=1.7 \times 10^{-4} \mathrm{~g} / \mathrm{L}$

Precipitation of Ionic Cmpds

Will a precipitate form when 0.150 L of 0.10 M lead (II) nitrate and 0.100 L of 0.20 M sodium chloride are mixed? For $\mathrm{PbCl}_{2}, \mathrm{~K}_{\mathrm{sp}}=1.2 \times 10^{-5}$ * see worksheet key

Common Ion Effect

- Solubility is decreased when a common ion is added to a solution containing an insoluble salt!

Example: $\mathrm{AgCl}_{(\mathrm{s})} \leftrightarrows \mathrm{Ag}^{+}{ }_{(\mathrm{aq})}+\mathrm{Cl}^{-}{ }_{(\mathrm{aq})}$
If we add NaCl to a AgCl solution, $\left[\mathrm{Cl}^{-}\right] \uparrow$, eq shifts left As eq shifts left, some AgCl precipitates out of solution, Thus, adding a common ion decreases the solubility!

Common Ion Effect

What will happen if solid NaF is added to a solution of saturated SrF_{2} ?
$\mathrm{SrF}_{2}(\mathrm{~s}) \leftrightarrows \mathrm{Sr}^{2+}(\mathrm{aq})+2 \mathrm{~F}^{-}(\mathrm{aq})$
a) Calculate the molar solubility of SrF_{2} in pure water $\left(\mathrm{K}_{\mathrm{sp}}=4.3 \times 10^{-9}\right)$.
b) Calculate the molar solubility of SrF_{2} in 0.010 M NaF .

Effect of pH on Solubility

Addition of an acid can increase the solubility of an insoluble basic salt.

E.g. $\mathrm{CaF}_{2}(\mathrm{~s}) \leftrightarrows \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{~F}^{-}(\mathrm{aq})$

Add strong acid (e.g. HCl) provides $\mathrm{H}_{3} \mathrm{O}^{+}$ions:

$$
\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{F}^{-} \rightarrow \mathrm{HF}+\mathrm{H}_{2} \mathrm{O}
$$

- Adding H^{+}causes $[\mathrm{F}] \downarrow$, equilibrium shifts right to form more F^{-}\& solubility of $\mathrm{CaF}_{2} \uparrow$.

pH and solubility

E.g. For the following salts, predict whether the salt will dissolve in an acidic solution.
A. AgBr
B. CaCO_{3} \qquad
C. PbCl_{2} \qquad
D. BaS \qquad

Qualitative Analysis

- Skipping Selective Precipitation
- Qualitative analysis is used to identify unknown ions in a solution.
- 152 LL should read this section before qual lab!
- Each ion can be precipitated out by addition of selective reagents.
- Purely qualitative research, like solving a puzzle. puzze.

Effect of Complex Ion on Solubility

Formation of complex ions can increase solubility of an insoluble salt

1) $\mathrm{AgCl}_{(\mathrm{s})} \leftrightarrows \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \quad \mathrm{K}_{1}=1.7 \times 10^{-10}$
2) $\mathrm{Ag}^{+}(\mathrm{aq})+2 \mathrm{NH}_{3}(\mathrm{aq}) \leftrightarrows \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}(\mathrm{aq}) \mathrm{K}_{2}=1.6 \times 10^{7}$
3) $\mathrm{AgCl}(\mathrm{s})+2 \mathrm{NH}_{3}(\mathrm{aq}) \leftrightarrows \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$

$$
\mathrm{K}_{3}=\mathrm{K}_{1} \times \mathrm{K}_{2}=2.7 \times 10^{-3}
$$

- In qual lab, ammonia is added to dissolve our AgCl precipitate so it can be separated from Hg .

