Ch 14.6 to 15 - Applications of Aqueous Equilibria

GCC CHM152

Creative Commons License

- Images and tables in this file have been used from the following sources:
- OpenStax: Creative Commons Attribution License 4.0.
- ChemWiki (CC BY-NC-SA 3.0): CC BY-NC-SA Unless otherwise noted, the StatWiki is licensed under a Creative e. Permissions beyond the scope of this license may be available at copyright@ucdavis.edu.
- Principles of General Chemistry (CC BY-NC-SA 3.0): http://2012books.lardbucket.org/pdfs/principles-of-generalchemistry-v1.0.pdf

Common Ion effect

The shift in equilibrium caused by the addition of a substance having an ion in common with the equilibrium mixture.

 Adding a common ion suppresses the ionization of a weak acid or a weak base.

The source of the common ion is typically provided by adding a strong acid, a strong base or a soluble salt to the equilibrium reaction mixture

Common Ion Concept Problem

Given this reaction:

 $CH_{3}CO_{7}H + H_{7}O \leftrightarrows H_{3}O^{+} + CH_{3}CO_{7}^{-}$

What happens to the pH of the acetic acid solution if we add NaCH₃CO₂?

Common Ion Effect

What is the pH of 0.100 M CH₃CO₂H solution? $K_a = 1.8 \times 10^{-5}$

 $CH_3CO_2H + H_2O \leftrightarrows CH_3CO_2^- + H_3O^+$ $K_a = \frac{1}{[HA]}$

```
• x = [H<sub>3</sub>O<sup>+</sup>] =
```

 $K_a =$

• pH =

• **pH** = _____ **for WA** (without a common ion) What is the pH of 0.100 M CH₃CO₂H if we add 0.050 M NaCH₃CO₂? Have WA (CH₃CO₂H) and conj base (CH₃CO₂-)

Buffer Solution A solution that resists changes in pH when a small amount of acid or base is added. Buffers are used to control pH e.g. biological buffers maintain the pH of all body fluids Best buffer systems consist of either a) a weak acid and its conjugate base e.g. HC₂H₃O₂ and NaC₂H₃O₂

b) a weak base and its conjugate acid e.g. NH₃ and NH₄Cl

Which are buffer solutions?

Identify the solutions below that would make good buffer solutions :

- HF and NaF
- NH₃ and NH₄Cl
- KOH and KF
- CH₃COOH and LiCH₃COO
- NaNO₃ and HNO₃
- NaOH and NaCl

How Buffer Solution works

acidconjugate base $CH_3COOH(aq) + H_2O(I) \rightleftharpoons H_3O^+(aq) + CH_3COO^-(aq)$ reacts withbaseacid

WA reacts with added base CH₃COOH(aq) + OH⁻(aq) \rightarrow CH₃COO⁻ (aq) + H₂O(l)

WB reacts with added acid CH₃COO⁻(aq) + H₃O⁺(aq) \rightarrow CH₃COOH(aq) + H₂O(I)

Buffer Capacity

Buffer capacity is the amount of acid or base the buffer can neutralize before there is a significant change in pH.

Buffers work best when [HA] and [A⁻] are equal.

 \Rightarrow For buffers to be effective, the ratio of Base:Acid should be within a factor of 10.

Thus $0.1 < [A^{-}]/[HA] < 10$

• Buffer capacity is also greater when larger amounts of HA and A are present.

ICE vs Change Tables			
	ICE table	Change Table	
When to use	Weak acid or base in water	Neutralization Reaction	
Units	molarity	moles	
Labels	Initial, Change, Equilibrium	Initial, Change, Final	
Arrows	÷	\rightarrow	
How to find x	Solve for x at equilibrium	x = L.R. = smallest # of initial moles	
		1:	

Buffer + HCl B) What is pH after 20.0 mL of 0.50 M HCl is added to buffer? • Write AB neut: H₃O⁺ reacts with A⁺ to form HA so A⁻↓ and HA↑ • calc moles, set up change table, plug final moles into HH! Initial mol HCl = ______ = LR AB Neut rxn: H₃O⁺ + HCO₂ → H₂O + HCO₂H <u>initial moles</u> <u>Change in moles</u> Final moles pH = ______(initially 3.95) • pH ↓ slightly when SA added to buffer • If same amount of SA was added to water, pH would drop from 7 to 2!

Note: Don't use original M's if V's of each solution are given

Strong Acid-Strong Base

Draw 4 beakers.

- 1) Draw 2 moles HCI. (How do we draw SA?)
- 2) Draw what happens when 1 mole NaOH is added.
- 3) Draw what happens when 2 moles NaOH are added.
- 4) Draw what happens when 3 moles NaOH are added.

Weak Acid-Strong Base

Draw 4 bakers.

- 1) Draw 2 moles weak acid. (Assume WA is not dissociated!)
- 2) Draw what happens when 1 mole KOH is added.
- 3) Draw what happens when 2 moles KOH are added.
- 4) Draw what happens when 3 moles KOH are added.

WA-SB Titration Problem 50.00 mL of 0.100 M acetic acid titrated by 0.150 M KOH. K₂ = 1.8x10⁻⁵ WA SB A) 0 mL of base; initial pH of WA = WA problem! Must set up ICE and K_{a} , x = [H₃O⁺] $CH_3COOH(aq) + H_2O \rightleftharpoons H_3O^+(aq) + CH_3COO^-(aq)$ I, M 0.100 0 0 С, М -x +x+xE, M 0.100 - x х х

 $K_{a} = \frac{x^{2}}{[HA]} \qquad \mathbf{x} = [\mathbf{H}_{3}\mathbf{O}^{+}] = \sqrt{0.100 \times 1.8 \times 10^{-5}} = 1.34 \times 10^{-3} \,\mathrm{M}$ pH = 2.87 (initial pH for WA solution)

WA-SB Titration before Eq Pt50.00 mL of 0.100 M acetic acid titrated by 0.150 M KOH.Ka = 1.8x10⁻⁵General steps: $HA + OH^- \rightarrow H_2O + A^-$ Write Neut rxn: $CH_3COOH + OH^- \rightarrow H_2O + CH_3COO^-$ Calc moles and use change table to determine what remains after neutralization!B) 10.00 mL KOH (pH before eq pt = buffer problem)Both HA and A- are present \Rightarrow buffer region

- Final moles HA = initial moles HA moles base added
- Final moles A⁻ formed = moles base added
- Plug final moles (or final M's) into HH equation
- DO NOT USE HH EQUATION FOR ANY OTHER REGION OF WA-SB TITRATION CURVE!

WA-SB Titration at Eq Pt 50.00 mL of 0.100 M acetic acid titrated by 0.150 M KOH V of KOH at eq pt = 33.33 mL C) at the eq. pt.; basic salt is present = WB problem! At the eq pt all of the SB and WA have reacted to produce a basic salt. (Remember the anion for a WA is not neutral – its basic!) Calculate [A⁻] = moles conj base/ total volume Conj Base (A⁻) reacts with water: A⁻ + H₂O = HA + OH⁻) Set up ICE table find K_b = K_w / K_a;

- Solve $K_b = x^2/[A^-]$ for x, where x = [OH⁻]
- calculate pOH and convert to pH

pH = 8.76 (see worksheet key for work)

*Note = pH must be > 7 for WA-SB at eq pt

Half Equivalence Point

- Special Region exists when Acid is half neutralized:
- Half of the acid remains and the other half has been converted into its conjugate base
- At the ¹/₂ eq pt, moles HA remaining = moles A⁻ formed
- Thus, [HA] = [A⁻]

 $pH = pK_a + \log ([A^-]/[HA])$

at $\frac{1}{2}$ eq pt: pH = pK_a

Solubility Equilibria

- Some combinations of ions form solid precipitates in aqueous solutions. (Refer to Solubility rules in Ch 9)
- These "insoluble" salts dissolve to a small extent and form a saturated solution.
- The undissolved solid and the dissociated ions in solution establish an equilibrium reaction.
- K_{sp} is the equilibrium constant for the dissocation of an insoluble salt.

important biological examples:

- tooth decay tooth enamel dissolves in acidic soln
- formation of kidney stones salts precipitate in kidney

Example. The dissolution of AgBr

$$AgBr(s) \leftrightarrows Ag^{+}(aq) + Br^{-}(aq)$$
$$K_{sp} = [Ag^{+}][Br^{-}]$$

K_{sp} is the solubility product constant - its the equilibrium constant for insoluble salts

- It is a measure of how soluble a salt is in H₂O
- \Rightarrow For salts with the same # of ions, the smaller the K_{so} , the less soluble the salt.
- \Rightarrow Table on next slide shows some K_{sp} values

Substance	Ppt color	K _{sp} value
AgCl	white	1.6x10 ⁻¹⁰
AgBr	off-white	5.0x10 ⁻¹³
AgI	yellow	1.5x10 ⁻¹⁶
PbS	black	7x10 ⁻²⁹
PbCl ₂	white	1.6x10 ⁻⁵
Fe(OH) ₃	rust red	4x10 ⁻³⁸
CaCO ₃	white	8.7x10 ⁻⁹
$BaSO_4$	white	2.3x10 ⁻⁸

Write the solubility equilibrium reactions and K_{sp} expressions for Sr₃(PO₄)₂. Sr₃(PO₄)₂ (s) ≒ 3Sr²⁺ (aq) + 2PO₄³⁻ (aq)

Solubility

- K_{sp} can be used to calculate the solubility
- Solubility (molar solubility) = molar concentration of dissolved salt; ion concentrations are related to this by their coefficients.

Solubility can also be expressed in g/L

Example: Fe(OH)₃: [Fe³⁺] = x [OH⁻] = 3x $K_{sp} = (x)(3x)^3$

Does a precipitate form? We can calculate the reaction quotient Q to predict if precipitation will occur Q > K_{sp}, eq shifts ← (toward s) ppt forms • There are excess ions in solution that will precipitate out to form a solid Q = K_{sp}, Saturated solution, no ppt • solution holds maximum amount of dissolved salt Q < K_{sp}, no ppt; eq shifts → (towards ions)

• Unsaturated solution, the ion []'s are not high enough to form a solid

Precipitation of Ionic Cmpds

Does a precipitate form in a solution that contains 0.010 M Pb(NO₃)₂ and 0.020 M NaCl? K_{sn} for PbCl₂ = 1.6×10⁻⁵

 $PbCl_2(s) \rightleftharpoons Pb^{2+}(aq) + 2 Cl^{-}(aq)$

 $[Pb^{+2}] = [Pb(NO_3)_2] = 0.010 \text{ M}$ $[Cl^{-}] = [NaCl] = 0.020 \text{ M}$

Calculate Q and compare Q to K!

 $Q = [Pb^{+2}][Cl^{-}]^2$

0 =

Common Ion Effect

 Solubility is decreased when a common ion is added to a solution containing an insoluble salt!

Example: AgCl(s) \leftrightarrows Ag⁺(aq) + Cl⁻(aq)

- If we add NaCl to a AgCl solution, [Cl⁻] [↑], eq shifts left.
- As eq shifts left, some AgCl precipitates out of solution,
- Thus, adding a common ion decreases the solubility!

Common Ion Effect

What will happen if solid NaF is added to a solution of saturated SrF_2 ?

 $SrF_2(s) \leftrightarrows Sr^{2+}(aq) + 2F^{-}(aq)$

- a) Calculate the molar solubility of SrF_2 in pure water ($K_{sp} = 4.3 \times 10^{-9}$).
- b) Calculate the molar solubility of SrF_2 in 0.010 M NaF.

Effect of pH on Solubility

Addition of an acid can increase the solubility of an insoluble basic salt.

E.g. $CaF_2(s) \leftrightarrows Ca^{2+}(aq) + 2F^{-}(aq)$

Adding strong acid (e.g. HCl) provides H_3O^+ ions: $H_3O^+ + F^- \rightarrow HF + H_2O$

• Adding H⁺ causes [F⁻] ___, equilibrium shifts ____ to form more ___ & solubility of CaF₂ ___.

pH and solubility

E.g. For the following salts, predict whether the salt will dissolve in an acidic solution.

- A. NH_4Br
- B. CaCO₃
- C. RbCl
- D. BaS

Complex Ions

A *complex ion* contains a metal cation bonded to one or more molecules or ions called ligands.

- The ligands act as Lewis bases. (e.g. H₂O, NH₃)
- K_f is the equilibrium constant for the formation of a complex ion.
- Table 15.2 lists K_f values

Formation Constant (K_f) values

 Table 15.2: Common Complex Ions and Their Formation

 Constants

Substance	K _f at 25°C
[Cd(CN) ₄] ²⁻	1.3x10 ⁷
$Ag(NH_3)_2^+$	1.7x10 ⁷
[AlF ₆] ³⁻	7.0x10 ¹⁹

The larger the formation constant, the more stable the complex ion is. More values can be found in **Appendix K**.

Selective Precipitation

Some compounds can be separated based on *selective precipitation*. This is the separation of precipitates based on different K_{sp} values. For example, AgCl ($K_{sp} = 1.6 \times 10^{-10}$), AgBr ($K_{sp} = 7.7 \times 10^{-13}$), and AgI ($K_{sp} = 8.3 \times 10^{-17}$) all precipitate.

Because silver iodide's K_{sp} value is so low (it is less soluble than the other salts), it would precipitate before the other two. Almost all of the AgI would precipitate before AgCl and AgBr would.