Ch 14.6 to 15 - Applications of Aqueous Equilibria

GCC CHM152

Common Ion effect

The shift in equilibrium caused by the addition of a substance having an ion in common with the equilibrium mixture.

- Adding a common ion suppresses the ionization of a weak acid or a weak base.

The source of the common ion is typically provided by adding a strong acid, a strong base or a soluble salt to the equilibrium reaction mixture.
reaction mixture.

Creative Commons License

- Images and tables in this file have been used from the following sources:
- OpenStax: © (1) Creative Commons Attribution License 4.0.
- ChemWiki (CC BY-NC-SA 3.0): (cc) BY-NC-SA Unless otherwise noted, the StatWiki is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. Permissions beyond the scope of this license may be available at copyright@ucdavis.edu.
- Principles of General Chemistry (CC BY-NC-SA 3.0): http://2012books.lardbucket.org/pdfs/principles-of-general-chemistry-v1.0.pdf

Common Ion Concept Problem

Given this reaction:

$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}$
What happens to the $\mathbf{p H}$ of the acetic acid solution if we add $\mathrm{NaCH}_{3} \mathrm{CO}_{2}$?

Common Ion Effect

What is the pH of $0.100 \mathrm{M} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ solution? $\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}$
$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{CH}_{3} \mathrm{CO}_{2}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \quad \mathrm{K}_{\mathrm{a}}=\frac{\mathrm{x}^{2}}{[\mathrm{HA}]}$

- $x=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=$
- $\mathrm{pH}=$ \qquad for WA (without a common ion) What is the pH of $0.100 \mathrm{M} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ if we add 0.050 M $\mathrm{NaCH}_{3} \mathrm{CO}_{2}$? Have WA $\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right)$ and conj base $\left(\mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}\right)$

$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$				
I, M	0.100		0.050	0
C, M	-x		+x	+x
E, M	$0.100-\mathrm{x}$		$0.050+\mathrm{x}$	x

$K_{a}=$
$x=$

- $\mathrm{pH}=$

Buffer Solution

A solution that resists changes in pH when a small amount of acid or base is added.
-Buffers are used to control pH
e.g. biological buffers maintain the pH of all body fluids
Best buffer systems consist of either
a) a weak acid and its conjugate base e.g. $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ and $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
b) a weak base and its conjugate acid e.g. NH_{3} and $\mathrm{NH}_{4} \mathrm{Cl}$

Which are buffer solutions?

Identify the solutions below that would make good buffer solutions :

- HF and NaF
- NH_{3} and $\mathrm{NH}_{4} \mathbf{C l}$
- KOH and KF
- $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{LiCH}_{3} \mathrm{COO}$
- NaNO_{3} and HNO_{3}
- NaOH and NaCl

Buffer Range

Buffers only work within a narrow range:

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}} \pm 1
$$

- To make a buffer, select an acid (and salt containing its CB) with a pK_{a} close to the pH you want $\left(\mathrm{pK}_{\mathrm{a}} \pm 1\right)$, and adjust the [base]/[acid] ratio to obtain the desired pH .
- How would you make a buffer solution with $\mathrm{pH}=$ 4.10? What could you use to make this?

Look at K_{a} table in last chapter for pK_{a} close to 4.10

- Benzoic acid, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH} \mathrm{K}_{\mathrm{a}}=6.5 \times 10^{-5}$ so $\mathrm{pK}_{\mathrm{a}}=4.19$
- Use mix of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ and salt $\left(\mathrm{NaC}_{6} \mathrm{H}_{5} \mathrm{COO}\right)$

Henderson-Hasselbalch Equation

pH of a buffer solution can be calculated from the Henderson Hasselbalch Equation:

$$
\mathrm{pH}=\mathbf{p} K_{\mathrm{a}}+\log \frac{\text { [conjugate base] }}{[\text { weak acid }]}
$$

- Only use this for buffers where you have a conjugate acid/base pair!
- Can use moles or M - depending on given info
$\Rightarrow \mathbf{V}$ units cancel since it's a ratio of [base]/[acid]!

ICE vs Change Tables					
	ICE table	Change Table			
When to use	Weak acid or base in water	Neutralization Reaction			
Units	molarity	moles			
Labels	Initial, Change, Equilibrium	Initial, Change, Final			
Arrows					\rightarrow
How to find x	Solve for x at equilibrium	$\mathrm{x}=$ L.R. $=$ smallest \# of initial moles			

pH of Buffer Solution

What is the pH of 500.0 mL of $0.10 \mathrm{M} \mathrm{HCO} \mathbf{H}_{2} \mathrm{H}$ combined with $\mathbf{4 0 0 . 0} \mathbf{~ m L}$ of $\mathbf{0 . 2 0} \mathbf{~ M ~ N a H C O}$? For $\mathbf{H C O}_{2} \mathbf{H}, \mathrm{~K}_{\mathrm{a}}=1.8 \times 10^{-4}$
See worksheet key for more detail!

- If given V's for each substance \Rightarrow calc moles (or diluted M)
- Write WA hydrolysis reaction $\left(\mathrm{HA}=\mathrm{HCO}_{2} \mathrm{H}\right)$
- Plug amounts into HH equation or K_{a} expression

Initial mol $\mathrm{HCO}_{2} \mathrm{H}=$
Initial mol $\mathrm{HCO}_{2}{ }^{-}=$
WA rxn: $\quad \mathrm{HCO}_{2} \mathrm{H}(a q)+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{HCO}_{2}^{-}(a q)$
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]\right)$
pH =

Note: Don't use oriainal M's if V's of each solution are aiven!

Buffer + HCl

B) What is pH after 20.0 mL of 0.50 M HCl is added to buffer? - Write AB neut: $\mathrm{H}_{3} \mathrm{O}^{+}$reacts with A^{-}to form HA so $\mathrm{A}^{-} \downarrow$ and HA \uparrow - calc moles, set up change table, plug final moles into HH !

Initial mol HCl = = LR

$\mathrm{pH}=$
(initially 3.95)

- pH \downarrow slightly when SA added to buffer
- If same amount of SA was added to water, pH would drop from 7 to 2!

Example. $\mathrm{HOCl} / \mathrm{NaOCl}$ Buffer

Consider a buffer solution prepared from HOCl and NaOCl . A) Write the net ionic equation for the neutralization reaction that occurs when NaOH is added to this buffer.
B) Will the pH stay the same, increase or decrease when NaOH is added?
C) Write the net ionic equation for the neutralization reaction that occurs when $\mathrm{HI}(\mathrm{aq})$ is added to this buffer.
D) Will the [HOCI] increase, decrease or stay the same when $\mathrm{HI}(\mathrm{aq})$ is added?
E) Will the $\left[\mathrm{OCl}^{-}\right]$increase, decrease or stay the same when $\mathrm{HI}(\mathrm{aq})$ is added?

pH Titration Curves

4 key regions on a titration curve

- Initial solution (before titrant is added)
- Before the equivalence point
- At the equivalence point
- After the equivalence point

For Titration problems may use mmol :
1 mole $=1000$ mmoles
$\mathrm{M}=\frac{\mathrm{mol}}{\mathrm{L}}=\frac{1000 \mathrm{mmol}}{1000 \mathrm{~mL}}=\frac{\mathrm{mmol}}{\mathrm{mL}}$

Strong Acid- Strong Base Titration

Strong Acid-Strong Base

Draw 4 beakers.

1) Draw 2 moles HCl . (How do we draw SA?)
2) Draw what happens when 1 mole NaOH is added.
3) Draw what happens when 2 moles NaOH are added.
4) Draw what happens when 3 moles NaOH are added.

Strong Base titrated by a Strong Acid

SA-SB Titration Problem

pH's for titration of 20.00 mL of 0.200 M HCl by 0.100 M NaOH .

AB neut reaction: $\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathbf{O}$
a) 0 mL NaOH , just have SA solution; initial pH of SA

$$
\text { For SA: }\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=[\mathrm{HCl}]=
$$

- $\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=$
b) 5.00 mL NaOH , Before eq. pt so have excess SA
- Calculate initial moles of acid $\&$ base,
- Subtract LR to find final moles of excess acid
- Excess moles SA =
- $[\mathrm{SA}]=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=$final moles SA/total volume
- $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=$
- $\mathrm{pH}=$

SA-SB Titration problem

pH's for 20.00 mL of 0.200 M HCl titrated by 0.100 M NaOH .
AB neut reaction: $\mathbf{H C l}+\mathbf{N a O H} \rightarrow \mathbf{N a C l}+\mathbf{H}_{\mathbf{2}} \mathbf{O}$
3) 40.00 mL NaOH , at equivalence point

- mol acid $=\mathrm{mol}$ base $=4.00 \mathrm{mmol}$
- $\mathrm{pH}=7$ (neutral pH, just have neutral salt and water left) - pH is always 7 at eq pt for strong acid-strong base!

4) 50.00 mL NaOH , After eq. pt so have excess SB!

- Calculate moles of acid and base
- subtract LR to find final moles of excess base
- $[\mathrm{SB}]=\left[\mathrm{OH}^{-}\right]=$final moles of base/total volume
- $\left[\mathrm{OH}^{-}\right]=$
- $\mathrm{pOH}=-\log \left(\left[\mathrm{OH}^{-}\right]=\right.$
- $\mathrm{pH}=14-\mathrm{pH}=$

Weak Acid- Strong Base Titration

Weak Base Titrated by Strong Acid

WA-SB Titration Problem
 50.00 mL of 0.100 M acetic acid titrated by 0.150 M KOH .

 $\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}$WA SB
A) 0 mL of base; initial pH of WA = WA problem!

- Must set up ICE and $\mathrm{K}_{\mathrm{a}^{\prime}} \mathrm{x}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$\mathrm{CH}_{3} \mathrm{COOH}(a q)+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{CH}_{3} \mathrm{COO}^{-}(a q)$

I, M	0.100		0	0
C, M	-x		+x	+x
E, M	$0.100-\mathrm{x}$		x	x

$$
K_{a}=\frac{x^{2}}{[H A]} \quad \mathrm{x}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\sqrt{0.100 \times 1.8 \times 10^{-5}}=1.34 \times 10^{-3} \mathrm{M}
$$

$$
\mathrm{pH}=2.87 \text { (initial pH for WA solution) }
$$

WA-SB Titration before Eq Pt

50.00 mL of 0.100 M acetic acid titrated by 0.150 M KOH . $\mathrm{Ka}=1.8 \times 10^{-5}$
General steps: $\mathrm{HA}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{A}^{-}$

- Write Neut rxn: $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3} \mathrm{COO}^{-}$
- Calc moles and use change table to determine what remains after neutralization!
B) $10.00 \mathrm{~mL} \mathrm{KOH}(\mathrm{pH}$ before eq $\mathrm{pt}=$ buffer problem)
- Both HA and A^{-}are present $\Rightarrow \underline{\text { buffer region }}$
- Final moles HA = initial moles HA - moles base added
- Final moles A^{-}formed $=$moles base added
- Plug final moles (or final M's) into HH equation
- DO NOT USE HH EQUATION FOR ANY OTHER REGION OF WA-SB TITRATION CURVE!

WA-SB Titration at Eq Pt

50.00 mL of 0.100 M acetic acid titrated by 0.150 M KOH

- V of KOH at eq $\mathrm{pt}=33.33 \mathrm{~mL}$
c) at the eq. pt.; basic salt is present $=W B$ problem!
- At the eq pt all of the SB and WA have reacted to produce a basic salt. (Remember the anion for a WA is not neutral - its basic!)
- Calculate $\left[A^{-}\right]=$moles conj base/ total volume
- Conj Base (A-) reacts with water: $\mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{HA}+\mathrm{OH}^{-}$)
- Set up ICE table
- find $K_{b}=K_{w} / K_{a}$;
- Solve $K_{b}=x^{2} /[A-]$ for x, where $x=\left[\mathrm{OH}^{-}\right]$
- calculate pOH and convert to pH
$\mathrm{pH}=8.76$ (see worksheet key for work)
*Note $=\mathrm{pH}$ must be >7 for WA-SB at eq pt

WA-SB Titration after Eq Pt

50.00 mL of 0.100 M acetic acid titrated by 0.150 M KOH .
d) 50.00 mL KOH (After eq pt: excess $\mathbf{O H}^{-}$from $\mathbf{~ S B}$)

- pH is determined primarily from excess SB.
- We can neglect the hydrolysis of conjugate base since it would contribute a lot less OH - compared to the SB.
- pH calc after eq pt is same for SA-SB and WA-SB!
- $\left[\mathrm{OH}^{-}\right]=$final moles $\mathrm{OH}^{-} /$total volume
$\mathrm{mmol} \mathrm{OH}^{-}=$
total $\mathrm{mL}=$
[OH -]=
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=$
$\mathrm{pH}=14-\mathrm{pOH}=$

Half Equivalence Point

- Special Region exists when Acid is half neutralized:
- Half of the acid remains and the other half has been converted into its conjugate base
- At the $1 / 2$ eq pt , moles HA remaining $=$ moles A formed
- Thus, $[H A]=\left[A^{-}\right]$
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]\right)$
at $1 / 2$ eq $p t: ~ p H=K_{a}$

End Point for Acid-Base Titrations

The endpoint in a titration can be visualized with the use of an acid-base indicator. (The acid and conjugate base forms of the indicator have different colors)

The endpoint of a titration is the point at which the color of the indicator changes.

Acid-Base Titration Indicators

Figure 14.22: Different indicators can be used depending on where the pH at the equivalence point is expected to be.

Polyprotic Acid Titration: $\mathrm{H}_{3} \mathrm{PO}_{4}$ with NaOH

- One eq. pt. for each proton.
- 3 eq. pts. and 3 half eq. pts.

Solubility Equilibria

* Some combinations of ions form solid precipitates in aqueous solutions. (Refer to Solubility rules in Ch 9)
*These "insoluble" salts dissolve to a small extent and form a saturated solution.
* The undissolved solid and the dissociated ions in solution establish an equilibrium reaction.
* $\mathrm{K}_{\text {sp }}$ is the equilibrium constant for the dissocation of an insoluble salt.
important biological examples:
- tooth decay - tooth enamel dissolves in acidic soln
- formation of kidney stones - salts precipitate in kidney

Example. The dissolution of AgBr

$$
\begin{gathered}
\mathrm{AgBr}(\mathrm{~s}) \leftrightarrows \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq}) \\
\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Br}^{-}\right]
\end{gathered}
$$

K_{sp} is the solubility product constant - its the equilibrium constant for insoluble salts

- It is a measure of how soluble a salt is in $\mathrm{H}_{2} \mathrm{O}$
\Rightarrow For salts with the same \# of ions, the smaller the K_{sp}, the less soluble the salt.
\Rightarrow Table on next slide shows some $\mathrm{K}_{\text {sp }}$ values

Write the solubility equilibrium reactions and $K_{\text {sp }}$ expressions for $\mathrm{Sr}_{3}\left(\mathrm{PO}_{4}\right)_{2}$.

$$
\mathrm{Sr}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s) \leftrightarrows 3 \mathrm{Sr}^{2+}(\mathrm{aq})+2 \mathrm{PO}_{4}^{3-}(\mathrm{aq})
$$

Solubility

- $\mathbf{K}_{\text {sp }}$ can be used to calculate the solubility
- Solubility (molar solubility) = molar concentration of dissolved salt; ion concentrations are related to this by their coefficients.
- Solubility can also be expressed in g/L

Example:
$\mathrm{Fe}(\mathrm{OH})_{3}:\left[\mathrm{Fe}^{3+}\right]=\mathrm{x}\left[\mathrm{OH}^{-}\right]=3 \mathrm{x} \quad \mathrm{K}_{\text {sp }}=(\mathrm{x})(3 \mathrm{x})^{3}$

Solubility/K sp $_{\text {sp }}$ Practice

1. $\mathrm{K}_{\text {sp }}$ for AgBr is 7.7×10^{-13}. Calculate the molar and gram solubility.
2. If a saturated solution prepared by dissolving CaF_{2} in water has $\left[\mathrm{Ca}^{2+}\right]=3.3 \times 10^{-4} \mathrm{M}$, what is the value of $K_{\text {sp }}$?
3. $\mathrm{K}_{\text {sp }}$ for $\mathrm{Al}(\mathrm{OH})_{3}$ is 1.9×10^{-33}. Calculate the molar solubility.
4. The solubility of $\mathrm{Ca}(\mathrm{OH})_{2}$ is $0.233 \mathrm{~g} / \mathrm{L}$. Calculate K_{sp}. Refer to solubility worksheet key!

Calculate solubility from Ksp

The $K_{\text {sp }}$ of silver bromide is 7.7×10^{-13}. Calculate the molar solubility.

$\operatorname{AgBr}(s) \rightleftharpoons \mathrm{Ag}^{+}(a q)+\operatorname{Br}(a q)$			- Include Ion Charges!
1 (M)	0	0	- Assume salt added to
(M)	+X	+x	$\mathrm{H}_{2} \mathrm{O}$ so initial ion []'s = 0 - $\mathrm{x}=$ molar solubility of salt
E (M)	x	x	
$K_{\text {sp }}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Br}{ }^{-}\right]=7.7 \times 10^{-13}$			
$7.7 \times 10^{-13}=(x)(x)$			
molar solubility $=x=$			

gram solubility =

Solubility/K ${ }_{\text {sp }}$ Practice

Remember:

- Molar solubility $=x$ in ICE table!
- $K_{\text {sp }}=$ eq constant for dissolution of salt!
- Refer to solubility worksheet key!

Does a precipitate form?

We can calculate the reaction quotient Q to predict if precipitation will occur
Q > $\boldsymbol{K}_{\text {sp }}$, eq shifts \leftarrow (toward s) ppt forms

- There are excess ions in solution that will precipitate out to form a solid
$\mathbf{Q}=\boldsymbol{K}_{\text {spı }}$, Saturated solution, no ppt
- solution holds maximum amount of dissolved salt

Q $<\boldsymbol{K}_{\text {sp, }}$ no ppt; eq shifts \rightarrow (towards ions)

- Unsaturated solution, the ion []'s are not high enough to form a solid

Precipitation of Ionic Cmpds

Does a precipitate form in a solution that contains $0.010 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ and 0.020 M NaCl ? $\mathrm{K}_{\text {sp }}$ for $\mathrm{PbCl}_{2}=1.6 \times 10^{-5}$
$\mathrm{PbCl}_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{Cl}(\mathrm{aq})$
$\left[\mathrm{Pb}{ }^{+2}\right]=\left[\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}\right]=0.010 \mathrm{M} \quad[\mathrm{Cl}]=[\mathrm{NaCl}]=0.020 \mathrm{M}$
Calculate Q and compare Q to K !
$\mathrm{Q}=\left[\mathrm{Pb}{ }^{+2}\right][\mathrm{Cl}-]^{2}$
$\mathrm{Q}=$

Common Ion Effect

What will happen if solid NaF is added to a solution of saturated SrF_{2} ?
$\mathrm{SrF}_{2}(\mathrm{~s}) \leftrightarrows \mathrm{Sr}^{2+}(\mathrm{aq})+2 \mathrm{~F}^{-}(\mathrm{aq})$
a) Calculate the molar solubility of SrF_{2} in pure water $\left(\mathrm{K}_{\mathrm{sp}}=4.3 \times 10^{-9}\right)$.
b) Calculate the molar solubility of SrF_{2} in 0.010 M NaF .

Common Ion Effect

- Solubility is decreased when a common ion is added to a solution containing an insoluble salt!

Example: $\mathrm{AgCl}(\mathrm{s}) \leftrightarrows \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$

- If we add NaCl to a AgCl solution, $[\mathrm{Cl}] \uparrow$, eq shifts left.
- As eq shifts left, some AgCl precipitates out of solution,
- Thus, adding a common ion decreases the solubility!

Effect of pH on Solubility

Addition of an acid can increase the solubility of an insoluble basic salt.

E.g. $\quad \mathrm{CaF}_{2}(s) \leftrightarrows \mathrm{Ca}^{2+}(a q)+2 \mathrm{~F}^{-}(a q)$

Adding strong acid (e.g. HCl) provides $\mathrm{H}_{3} \mathrm{O}^{+}$ions:
$\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{F}^{-} \rightarrow \mathrm{HF}+\mathrm{H}_{2} \mathrm{O}$

- Adding H^{+}causes $\left[\mathrm{F}^{-}\right]$__, equilibrium shifts \qquad to
form more \qquad \& solubility of CaF_{2} \qquad

pH and solubility

E.g. For the following salts, predict whether the salt will dissolve in an acidic solution.
A. $\mathrm{NH}_{4} \mathrm{Br}$
B. CaCO_{3}
C. RbCl
D. BaS

Complex Ions

A complex ion contains a metal cation bonded to one or more molecules or ions called ligands.

- The ligands act as Lewis bases. (e.g. $\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}$)
- K_{f} is the equilibrium constant for the formation of a complex ion.
- Table 15.2 lists K_{f} values | 51 |
| ---: |

Formation Constant $\left(\mathrm{K}_{\mathrm{f}}\right)$ values

Table 15.2: Common Complex Ions and Their Formation Constants

Substance	K_{f} at $25^{\circ} \mathrm{C}$
$\left[\mathrm{Cd}(\mathrm{CN})_{4}\right]^{2-}$	1.3×10^{7}
$\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}$	1.7×10^{7}
$\left[\mathrm{AlF}_{6}\right]^{--}$	7.0×10^{19}

The larger the formation constant, the more stable the complex ion is. More values can be found in Appendix K.

Effect of Complex Ion on Solubility

Formation of complex ions can increase solubility of an insoluble salt

$$
\begin{aligned}
& \text { 1) } \mathrm{AgCl}_{(\mathrm{s})} \leftrightarrows \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \quad \mathrm{K}_{1}=1.7 \times \mathbf{x 1 0}^{-10} \\
& \text { 2) } \mathbf{A g}{ }^{+}(\mathrm{aq})+\mathbf{2} \mathbf{N H}_{\mathbf{3}}(\mathrm{aq}) \leftrightarrows \mathbf{A g}\left(\mathbf{N H}_{3}\right)_{2}{ }^{+}(\mathrm{aq}) \mathrm{K}_{\mathbf{2}}=\mathbf{1 . 6} \times \mathbf{1 0}^{\mathbf{7}} \\
& \text { 3) } \mathbf{A g C l}(\mathrm{s})+2 \mathrm{NH}_{3}(\mathrm{aq}) \leftrightarrows \mathrm{Ag}\left(\mathbf{N H}_{3}\right)_{2}{ }^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \\
& \mathrm{K}_{3}=\mathrm{K}_{1} \times \mathrm{K}_{2}=2.7 \times 10^{-3} \\
& \text {-In qual lab, ammonia is added to dissolve our } \mathrm{AgCl} \\
& \text { precipitate so it can be separated from other ions. }
\end{aligned}
$$

Selective Precipitation

Some compounds can be separated based on selective precipitation. This is the separation of precipitates based on different K_{sp} values. For example,
$\mathrm{AgCl}\left(\mathrm{K}_{\text {sp }}=1.6 \times 10^{-10}\right)$,
$\operatorname{AgBr}\left(\mathrm{K}_{\mathrm{sp}}=7.7 \times 10^{-13}\right)$, and
$\mathrm{AgI}\left(\mathrm{K}_{\text {sp }}=8.3 \times 10^{-17}\right)$ all precipitate.
Because silver iodide's K_{sp} value is so low (it is less soluble than the other salts), it would precipitate before the other two. Almost all of the AgI would precipitate before AgCl and AgBr would.

