

Chemistry: OpenStax

Thermodynamics

- You are responsible for Thermo concepts from CHM 151. You may want to review Chapter 5, specifically sections 1-3.
- Thermodynamics: Study of energy changes in chemical reactions and physical processes.
- Thermodynamics allows us to determine IF a reaction will occur.
- It also tells us the direction and extent of a reaction.
- It does not tell us how fast a reaction occurs (kinetics tell us this!)

Thermochemistry Review

1st Law of Thermodynamics: Energy is conserved. Energy can be converted from one form to another but it cannot be created or destroyed.

- If a system gives off heat, the surroundings must absorb it (and vice versa).
- Heat flow (enthalpy, ΔH) is defined with reference to the system
 - System absorbs heat, $\Delta H > 0$, endothermic
 - System gives off heat, $\Delta H < 0$, exothermic

Predicting sign for ΔH^o_{rxn}

Predict whether the following are endothermic (need heat) or exothermic (release heat):

- Decomposition
- Acid-Base Neutralization
- Combustion
- Melting
- Freezing
- Boiling

Remember breaking bonds requires energy = endo but making new bonds releases energy = exo.

Calculating ΔH^{o}_{rxn}

The ° symbol refers to the standard state, 1.00 atm pressure, 25.0°C, 1.00 M for solutions

ΔH^{o}_{f} = Standard Molar Enthalpy of Formation

The enthalpy change when 1 mole of a compound is formed from its elements in their standard states.

- \blacklozenge Appendix G lists values for $\Delta H^{o}{}_{f}, \Delta G^{o}{}_{f}$ and S^o
- $\blacklozenge \Delta H^o{}_f$ = 0 for an element in its most stable form
- Know most stable forms for the elements!
- ♦ △H^o_f units: kJ/mol

 $\Delta H^{o}_{rxn} = \Sigma n \cdot \Delta H^{o}_{f} (products) - \Sigma n \cdot \Delta H^{o}_{f} (reactants)$

n = moles (coefficient in balanced reaction)

Heat of formation rxn & ΔH^{o}_{rxn}

Write heat of formation reaction for $H_2O(I)$.

- Product = 1 mol H₂O(I)
- Reactants = elements in most stable form
 H₂(g) + ½ O₂(g) → H₂O(I)

Calculate ΔH°_{rxn} for the following reaction. $4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$ $\Delta H^{\circ}_{f}[NO(g)] = 90.2 \text{ kJ/mol}; \Delta H^{\circ}_{f}[H_2O(g)] = -241.8 \text{ kJ/mol}; \Delta H^{\circ}_{f}[O_2(g)] =$

Answer: $\Delta H^{\circ}_{rxn} = -905.6 \text{ kJ}$

Spontaneous Processes

A <u>spontaneous process</u> proceeds on its own without any external influence. The reverse of a spontaneous process is always nonspontaneous –it does not occur naturally.

 Consider the expansion of a gas into a vacuum. This happens spontaneously. The reverse process does not!

Spontaneous Chemical Reactions

Spontaneous processes

- hot object cools
- Ice melts at T > 0 °C
- iron rusts
- sodium reacts with H₂O
- Note that spontaneous does not mean fast!
 - Rusting of iron is spontaneous but occurs slowly!
- · What makes a process spontaneous?
 - Spontaneity is determined by both the enthalpy and entropy of a reaction.

Enthalpy, Entropy and Spontaneity

Nature tends toward state of lower energy.

Many spontaneous processes are exothermic (e.g. combustion reactions have ΔH < 0), but some spontaneous processes are endothermic (e.g. ice melting has ΔH > 0).

Nature tends to become more disordered or random.

- Entropy of a system typically increases, ΔS > 0 (+ ΔS = increase in disorder)
- Example: an office naturally becomes more messy over time.

Entropy (S)

Entropy is a measure of disorder or randomness.

- Units of Entropy: $\frac{J}{K \cdot mol}$
- S°: standard molar entropy of an element in its most stable form is not zero!

les-of-ae

Image from Principles of General Chemistry http://2012books.lardbucket.org/books/princip -y1.0/s19-chemical-equilibrium.html, CC-BY-NC-SA 3.0 license

Entropy and solubility Dissolving a solute usually increases entropy since a solution has more possible arrangements and is more dispersed but some ionic compounds have a negative entropy change upon dissolution. The compounds: entropy can decrease or increase NaCl (s): $\Delta S_{soln} = +43.4 \text{ J/K}$ AlCl₃ (s): $\Delta S_{soln} = -253.2 \text{ J/K}$

Entropy Summary

- Temperature changes
 - Increase: ΔS > 0 (more energy, more positions, more possible arrangements)
- Phase changes
- Boiling, melting: $\Delta S > 0$
- Creating more moles
 - $\Delta S > 0$
- Salts dissolving: Δ S +/- but usually
- Also entropy usually [†] as complexity of molecule increases.

Predict Entropy change

Predict whether entropy increases ($\Delta S > 0$) or decreases ($\Delta S < 0$) for the following processes. Explain why!

- $2H_2(g) + O_2(g) \leftrightarrows 2H_2O(I)$
- KBr (s) → K⁺(aq) + Br⁻(aq)
- 4 Al(s) + 3 $O_2(g) \rightarrow 2Al_2O_3(s)$
- $I_2(s) \rightarrow I_2(g)$
- $PCI_5(s) \rightarrow PCI_3(I) + CI_2(g)$

Answers

- 2H₂(g) + O₂(g) ≒ 2H₂O(I):
 ΔS < 0; fewer particles, phase change
- KBr(s) → K⁺(aq) + Br⁻(aq):
 ΔS > 0; more particles/phase change
- 4 Al(s) + 3 $O_2(g) \rightarrow 2Al_2O_3(s)$:
- ΔS < 0; fewer particles/phase change
 I₂(s) → I₂(g):
- $\Delta S > 0$; phase change
- $PCl_5(s) \rightarrow PCl_3(l) + Cl_2(g)$:
 - $\Delta S > 0$; more particles/phase changes

Standard Molar Entropy

3rd Law of Thermodynamics: The entropy of a perfectly ordered crystalline substance at 0 K is zero.

 This allows us to calculate entropy (S) and changes in entropy (ΔS); unlike enthalpy where we can only measure changes!

Standard Molar Entropies (Table 16.2) - entropy of 1 mole of a pure substance at 1 atm pressure and 25°C (J/mol•K)

• $\Delta S^{\circ}_{rxn} = \Sigma n S^{\circ}(products) - \Sigma n S^{\circ}(reactants)$

Standard Entropy Values (So)

Which phase has the lowest entropy? Highest?

Substance	Sº (J mol ⁻¹ K ⁻¹)	Substance	Sº (J mol ⁻¹ K ⁻¹)
C (s, diamond)	2.38	H (g)	114.6
C (s, graphite)	5.740	H ₂ (g)	130.57
Al (s)	28.3	CH4 (g)	186.3
$Al_2O_3(s)$	50.92	HCl (g)	186.8
BaSO ₄ (s)	132.2	H ₂ O (g)	188.8
		CO (g)	197.7
H ₂ O (1)	70.0	CO ₂ (g)	213.8
Hg (l)	75.9	$C_{2}H_{4}(g)$	219.3
H ₂ O ₂ (1)	109.6	$C_2H_6(g)$	229.5
Br ₂ (l)	152.23	CH ₃ OH (g)	239.9
CCl ₄ (l)	214.4	CCl ₄ (g)	309.7

form is **NOT** zero (like for ΔH_{f}^{o}).

Entropy Change for a Reaction

Calculate ΔS°_{rxn} for 2Na(s) + Cl₂(g) \leftrightarrows 2NaCl(s) S° values: Na(s) = 51.05 J/mol·K, Cl₂(g) = 223.0 J/mol·K, NaCl(s) = 72.38 J/mol·K

- ΔS^o_{rxn} = -180.3 J/K
- Entropy change is < 0. There is more order due to the phase change.

2nd Law of Thermodynamics

- 2nd Law of Thermodynamics: in any spontaneous process, the *total* entropy of a system and its surroundings always increases. (system = reaction)
- $\Delta S_{\text{total}} = \Delta S_{\text{system}} + \Delta S_{\text{surroundings}}$
- $\Delta S_{total} > 0$, the reaction is spontaneous
- $\Delta S_{\text{total}} < 0$, the reaction is nonspontaneous
- $\Delta S_{total} = 0$, the reaction is at equilibrium
- All reactions proceed spontaneously in a direction that increases the entropy of the system plus the surroundings.

Calculating ΔS_{surr} Exothermic: heat flows from system to surroundings, surroundings have more energy = more disorder. (Hotter particles have more motion) ΔS_{surr} > 0 when exothermic: ΔH < 0 Endothermic: heat flows into system from surroundings, surroundings have less energy which gives them more order. ΔS_{surr} < 0 when endothermic: ΔH > 0 Therefore: ΔS_{surr} = -ΔH_{sys}/T ΔS_{Tot} = ΔS_{sys}-ΔH_{sys}/T

Gibbs free energy (G) or free energy

G is the maximum amount of energy available to do work on the surroundings.

- Takes into account enthalpy and entropy to predict spontaneity of a reaction.
- $\Delta G = \Delta H T \Delta S$ (ΔG units: kJ/mol)
 - T must be in Kelvin! Watch units!
 - The actual amount of work (w_{max}) obtained is always less than the maximum available because of energy lost in carrying out a process (given off as heat, light, sound, etc. energy).
- In any spontaneous process (constant T and P), the free energy of the system always decreases!

Free Energy sign is T dependent when enthalpy and entropy have same sign!

- Notice that the T∆S term is temperature dependent. Temperature plays a part in predicting spontaneity.
 - ◆ Endothermic processes are spontaneous at higher temps (T∆S > ∆H)
 - Exothermic processes are spontaneous at lower temps (TΔS < ΔH)

Calculating Entropy of Vaporization

- Phase changes occur at eq: $\Delta S = \Delta H / T$
- The boiling point of water is 100 °C and the enthalpy change for the conversion of water to steam is $\Delta H_{vap} = 40.67$ kJ/mol. What is the entropy change for vaporization, ΔS_{vap} , in J/(K-mol)?

•
$$\Delta S_{vap} = \Delta H_{vap} / T$$

•
$$\Delta S_{vap} = \frac{40.67 \frac{\text{kJ}}{\text{mol}} \times \frac{1000 \text{J}}{1 \text{kJ}}}{373 \text{K}} = 109 \frac{\text{J}}{\text{K} \cdot \text{mol}}$$

Find T for spontaneous rxn

• Calculate ΔG given ΔH = -227 kJ, ΔS = -309 J/K, T = 1450 K.

Is this process spontaneous at this temperature? If not, calculate the temperature (in °C) at which this reaction becomes spontaneous. (Hint: set $\Delta G = 0$ and solve for T!)

Find T spontaneous rxn

- $\Delta G = +221 \text{ kJ}$; not spontaneous
- ΔG = 0; ΔH = TΔS
- T = Δ H / Δ S = -227 kJ / -0.309 kJ/K
- T = 735 K = <mark>462</mark> °C
- Spontaneous when T < 462 °C
- (entropy & enthalpy are both -, so it is spontaneous at T below equilibrium T.)

Standard Free Energy Changes

 ΔG depends on T, P, [] and physical states (like ΔH and S).

Standard-state conditions:

- Solids, liquids, and gases in pure form
- 1 M Solutions, gases at 1 atm pressure
- Room temperature: 25°C (298 K)

Standard free energy change (ΔG°) is the free energy change when reactants in their standard states are converted to products in their standard states.

Standard Free Energy Changes

- Can get ΔG° from ΔG° = ΔH° TΔS°
 Use ΔG° to predict spontaneity in the standard state
- 2) ΔG° can also be calculated from standard free energies of formation: (ΔG°_{f})
 - AG^{o}_{rxn} = Σ n ΔG^o_f(products) Σ n ΔG^o_f(reactants)
 - $\Delta G_{f}^{o} = standard free energy of formation: the free energy change when 1 mole of a compound is formed from its elements in their standard states.$
 - ♦ △G°_f = 0 for an element in its stable form
 - \blacklozenge Values of $\Delta G^o{}_{f}, \Delta H^o{}_{f},$ S° are listed in Appendix

Reaction for ΔG^{o}_{f}

- Which one of these reactions corresponds to ΔG^{o}_{f} of $H_2O(g)$?
 - ◆ $2H_2(g) + O_2(g) \leftrightarrows 2H_2O(g)$
 - ♦ $H_2(g) + \frac{1}{2}O_2(g) \leftrightarrows H_2O(g)$
 - $\bullet H_2(g) + \frac{1}{2} O_2(s) \leftrightarrows H_2O(g)$

 ΔG_{f}^{o} in kJ/mol ΔG° calculation -604.20 CaO(s) Ca(OH)₂(s) -896.76 $H_2O(g)$ -228.59 -237.18 H₂O(I) $\Delta G^{\circ} = \Sigma n \Delta G^{\circ}_{f}$ (products) - $\Sigma n \Delta G^{\circ}_{f}$ (reactants) Calculate ΔG° for these reactions and predict whether they will be spontaneous. • $2H_2(g) + O_2(g) \leftrightarrows 2H_2O(g)$ • CaO(s) + $H_2O(I) \leftrightarrows Ca(OH)_2(s)$ $\Delta G^{\circ}(H_2O) = -457.18$ kJ, spontaneous $\Delta G^{\circ}(Ca(OH)_2) = -55.38 \text{ kJ}$, spontaneous

Relating ΔG to ΔG° and Q ΔG is the actual free energy – this is the free energy change under nonstandard conditions. It changes as a reaction proceeds, as concentrations and/or pressures change. ΔG° IS standard and does NOT change during a reaction.

 $\Delta \mathbf{G} = \Delta \mathbf{G}^{\circ} + \mathbf{RT} \ln \mathbf{Q}$

- Q = Reaction Quotient (plug the given []'s and P's into Q)
- R = 8.314 J/mol-K, T in Kelvin

Free Energy and Equilibrium

 $\Delta \mathbf{G} = \Delta \mathbf{G}^{\mathrm{o}} + \mathbf{RT} \ln \mathbf{Q}$

At equilibrium, $\Delta G = 0$ and Q = K: $\Delta G^{o} = - RT \ln K$

ΔG ^o	K	Comment
$\Delta G^{\rm o} < 0$	K > 1	Equilibrium mixture contains mostly products.
$\Delta G^o > 0$	K < 1	Equilibrium mixture contains mostly reactants.
$\Delta G^{\rm o}=0$	K = 1	Equilibrium mixture contains appreciable amount of reactants and products at equilibrium

Calculating K from ΔG°

 $\Delta G^{\circ} \text{ is -24.7 kJ/mol for the formation of}$ methanol. $C(s) + \frac{1}{2} O_{2}(g) + 2H_{2}(g) \leftrightarrows CH_{3}OH(g)$ Calculate the equilibrium constant, K, at 25 °C for this reaction. In K = -\Delta G^{\circ}/RT = -(-24.7 kJ/mol /(0.008314 kJ/mol·K × 298 K)) In K = 9.969; K = e^{9.969} = 2.14 x 10^{4}

Calculation ΔG° from K

At 25 °C, K_a for acetic acid is 1.8×10^{-5} . a) Predict the sign of Δ G° for CH₃COOH(*aq*) + H₂O(*l*) \leftrightarrows H₃O⁺(*aq*) + CH₃COO⁻(*aq*). b) Calculate Δ G° at 25 °C.

K < 1 so ∆G° is +

• $\Delta G^{\circ} = -(8.314 \text{ J/mol} \cdot \text{K})(298 \text{ K})(\ln 1.8 \times 10^{-5})$

• $\Delta G^{\circ} = 2.7 \times 10^4 \text{ J/mol} \text{ (or } 27 \text{ kJ/mol)}$

Find ΔG for weak acid solution

Calculate ΔG at 25 °C for the acetic acid equilibrium reaction, when $[H_3O^+] = 0.020$ M, $[CH_3COO^-] = 0.010$ M and $[CH_3COOH] = 0.10$ M. (Use ΔG° from part b.)

 $Q = (0.020)(0.010)/(0.10) = 2.0 \times 10^{-3}$

∆G = 27 kJ/mol + (0.008314 kJ/K·mol)(298 K)(In 0.0020)

 $\label{eq:deltaG} \Delta G = 12 \ \text{kJ/mol} \ (\text{nonspontaneous in forward direction}) \\ \text{Note: } Q > K_a = 1.8 \times 10^{-5} \ \text{so reaction reverses to reach eq.}$

Calculate Nonstandard Free Energy ΔG° for the reaction $H_2(g) + I_2(g) \leftrightarrows 2$ HI(g) is 2.60 kJ/mol at 25°C. In one experiment, the initial pressures are $P_{H_2} = 4.3$ atm, $P_{I_2} = 0.34$ atm and $P_{HI} = 0.23$ atm. • Calculate ΔG and predict the direction that this reaction will proceed. Q = 0.0362 $\Delta G = 2.60$ kJ/mol+(8.314×10⁻³kJ/K·mol)(298 K)(ln 0.0362) $\Delta G = -5.6$ kJ/mol Spontaneous so Eq shifts right

Calculations Practice

- Calculate $\triangle G$ for S(s) + O₂(g) \leftrightarrows SO₂(g) when P_{O2} = 0.140 atm and P_{SO2} = 1.24 atm at 25°C.
- Need to calculate ΔG° and Q.
 ΔG°_f (S(s)) = 0 kJ/mol; ΔG°_f (O₂(g)) = 0 kJ/mol; ΔG°_f (SO₂(g)) = -300.2 kJ/mol
- Q = 1.24 atm / 0.140 atm = 8.8571
- ∆G° = -300.2 kJ
- ∆G = -295 kJ

g