

Thermodynamics

- You are responsible for Thermo concepts from CHM 151. You may want to review Chapter 5, specifically sections 1-3.
- Thermodynamics: Study of energy changes in chemical reactions and physical processes.
- Thermodynamics allows us to determine IF a reaction will occur.
- It also tells us the direction and extent of a reaction.
- It does not tell us how fast a reaction occurs (kinetics tell us this!)

Creative Commons License

- Images and tables in this file have been used from the following sources:
- OpenStax:(c) (4) Creative Commons Attribution License 4.0.
- ChemWiki (CC BY-NC-SA 3.0): Unless otherwise noted, the StatWiki is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. Permissions beyond the scope of this license may be available at copyright@ucdavis.edu. (cc) BY-NC-SA
- Principles of General Chemistry (CC BY-NC-SA 3.0): http://2012books.lardbucket.org/pdfs/principles-of-general-chemistry-v1.0.pdf

Thermochemistry Review

$1^{\text {st }}$ Law of Thermodynamics: Energy is conserved. Energy can be converted from one form to another but it cannot be created or destroyed.

- If a system gives off heat, the surroundings must absorb it (and vice versa).
\rightarrow Heat flow (enthalpy, $\Delta \mathrm{H}$) is defined with reference to the system
- System absorbs heat, $\Delta \mathrm{H}>0$, endothermic
- System gives off heat, $\Delta \mathrm{H}<0$, exothermic

Predicting sign for $\Delta \mathrm{H}^{0}{ }_{\mathrm{rxn}}$

Predict whether the following are endothermic (need heat) or exothermic (release heat):

- Decomposition	+
- Acid-Base Neutralization	-
- Combustion	-
- Melting	+
Freezing	-
Boiling	+

Remember breaking bonds requires energy = endo but making new bonds releases energy = exo.

Calculating $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}$

The ${ }^{\circ}$ symbol refers to the standard state, 1.00 atm pressure, $25.0^{\circ} \mathrm{C}, 1.00 \mathrm{M}$ for solutions
$\Delta \mathrm{H}_{\mathrm{f}}=$ Standard Molar Enthalpy of Formation
The enthalpy change when 1 mole of a compound is formed from its elements in their standard states.

- Appendix G lists values for $\Delta \mathrm{H}_{\mathrm{f}}{ }_{\mathrm{f}}, \Delta \mathrm{G}_{\mathrm{f}}{ }_{\mathrm{f}}$ and S°
$-\Delta \mathrm{H}_{\mathrm{f}}=0$ for an element in its most stable form
- Know most stable forms for the elements!
- $\Delta \mathrm{H}_{\mathrm{f}}$ units: $\mathrm{kJ} / \mathrm{mol}$
$\Delta H_{r x n}^{o}=\Sigma \mathrm{n} \cdot \Delta \mathrm{H}_{\mathrm{f}}^{0}$ (products) $-\Sigma \mathrm{n} \cdot \Delta \mathrm{H}_{\mathrm{f}}^{0}$ (reactants)
- $\mathrm{n}=$ moles (coefficient in balanced reaction)

Heat of formation rxn \& $\Delta \mathrm{H}^{\circ}{ }_{r x n}$

Write heat of formation reaction for $\mathrm{H}_{2} \mathrm{O}(I)$.

- Product $=1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
- Reactants = elements in most stable form
$-\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
Calculate $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}$ for the following reaction.
$4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \rightarrow 4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)$ $\Delta \mathrm{H}_{\mathrm{f}}[\mathrm{NO}(\mathrm{g})]=90.2 \mathrm{~kJ} / \mathrm{mol} ; \Delta \mathrm{H}_{\mathrm{f}}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\right]=-241.8 \mathrm{~kJ} / \mathrm{mol}$ $\Delta H^{\circ}\left[\mathrm{NH}_{3}(\mathrm{~g})\right]=-46.1 \mathrm{~kJ} / \mathrm{mol} ; \Delta \mathrm{H}_{\mathrm{f}}{ }^{[}\left[\mathrm{O}_{2}(\mathrm{~g})\right]=$?

Answer: $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}=-905.6 \mathrm{~kJ}$

Spontaneous Processes

A spontaneous process proceeds on its own without any external influence. The reverse of a spontaneous process is always nonspontaneous -it does not occur naturally.

- Consider the expansion of a gas into a vacuum. This happens spontaneously. The reverse process does not!

Enthalpy, Entropy and Spontaneity

Nature tends toward state of lower energy.

- Many spontaneous processes are exothermic (e.g. combustion reactions have $\Delta H<0$), but some spontaneous processes are endothermic (e.g. ice melting has $\Delta H>0$).
Nature tends to become more disordered or random.
- Entropy of a system typically increases, $\Delta \mathrm{S}>0(+\Delta \mathrm{S}=$ increase in disorder)
- Example: an office naturally becomes more messy over time.

Entropy (S)

Entropy is a measure of disorder or randomness.

- Units of Entropy: $\frac{\mathrm{J}}{K \cdot m o l}$
- S° : standard molar entropy of an element in its most stable form is not zero!

Entropy of Molecules

The atoms, molecules, or ions that compose a chemical system can undergo several types of molecular motion, including translation, rotation, and vibration. The greater the molecular motion of a system, the greater the number of possible microstates and the higher the entropy.
Image from Principles of General Chemistry http:/20012books.lardbucket.orgabooks/principles-of-general-chemistry -v1.0/s19-chemical-equilibrium.html, CC-BY-NC-SA 3.0 license

Which has the greater entropy?

Solid, liquid or gas? (ice, water, or steam)

S (s) < S (I) < S (g)

Entropy and solubility

Dissolving a solute usually increase entropy since a solution has more possible arrangements and is more dispersed but some ionic compounds have a negative entropy change upon dissolution

Ionic compounds: entropy can decrease or increase
$\mathrm{NaCl}(\mathrm{s}): \Delta \mathrm{S}_{\text {soln }}=+43.4 \mathrm{~J} / \mathrm{K}$
$\mathrm{AlCl}_{3}(\mathrm{~s}): \Delta \mathrm{S}_{\text {soln }}=-253.2 \mathrm{~J} / \mathrm{K}$

Predict Entropy change

Predict whether entropy increases ($\Delta \mathrm{S}>0$) or decreases $(\Delta S<0)$ for the following processes. Explain why!

- $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
- $\mathrm{KBr}(\mathrm{s}) \rightarrow \mathrm{K}^{+}(\mathrm{aq})+\mathrm{Br}(\mathrm{aq})$
- $4 \mathrm{Al}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$
- $\mathrm{I}_{2}(\mathrm{~s}) \rightarrow \mathrm{I}_{2}(\mathrm{~g})$
- $\mathrm{PCl}_{5}(\mathrm{~s}) \rightarrow \mathrm{PCl}_{3}(\mathrm{I})+\mathrm{Cl}_{2}(\mathrm{~g})$

Entropy and temperature

- Consider gases at different temperatures
- High T: More motion \& higher kinetic energy so there are more possible arrangements.

Entropy Summary

- Temperature changes
\rightarrow Increase: $\Delta \mathrm{S}>0$ (more energy, more positions, more possible arrangements)
- Phase changes

Boiling, melting: $\Delta \mathrm{S}>0$

- Creating more moles - $\Delta \mathrm{S}>0$
- Salts dissolving: $\Delta \mathrm{S}+$ /- but usually
- Also entropy usually \dagger as complexity of molecule increases.

Answers

- $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}):$
$-\Delta \mathrm{S}<0$; fewer particles, phase change
- $\mathrm{KBr}(\mathrm{s}) \rightarrow \mathrm{K}^{+}(\mathrm{aq})+\mathrm{Br}(\mathrm{aq}):$
- $\Delta \mathrm{S}>0$; more particles/phase change
- $4 \mathrm{Al}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s}):$
- $\Delta \mathrm{S}<0$; fewer particles/phase change
- $\mathrm{I}_{2}(\mathrm{~s}) \rightarrow \mathrm{I}_{2}(\mathrm{~g}):$
- $\Delta \mathrm{S}>0$; phase change
- $\mathrm{PCl}_{5}(\mathrm{~s}) \rightarrow \mathrm{PCl}_{3}(\mathrm{l})+\mathrm{Cl}_{2}(\mathrm{~g}):$
- $\Delta S>0$; more particles/phase changes

Standard Molar Entropy

$3^{\text {rd }}$ Law of Thermodynamics: The entropy of a perfectly ordered crystalline substance at 0 K is zero.

- This allows us to calculate entropy (S) and changes in entropy ($\Delta \mathrm{S}$); unlike enthalpy where we can only measure changes!
Standard Molar Entropies (Table 16.2) - entropy of 1 mole of a pure substance at 1 atm pressure and $25^{\circ} \mathrm{C}(\mathrm{J} / \mathrm{mol} \cdot \mathrm{K})$

$$
\Delta \mathrm{S}^{\circ}{ }_{\mathrm{rxn}}=\Sigma \mathrm{nS} \mathrm{~S}^{\circ}(\text { products })-\Sigma \mathrm{nS}^{\circ}(\text { reactants })
$$

Entropy Change for a Reaction

Calculate $\Delta \mathrm{S}^{\circ}{ }_{\mathrm{rxn}}$ for $2 \mathrm{Na}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{NaCl}(\mathrm{s})$ S° values: $\mathrm{Na}(\mathrm{s})=51.05 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}, \mathrm{Cl}_{2}(\mathrm{~g})=$ $223.0 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}, \mathrm{NaCl}(\mathrm{s})=72.38 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$

- $\Delta \mathrm{S}^{\circ}{ }_{\mathrm{rxn}}=-180.3 \mathrm{~J} / \mathrm{K}$
- Entropy change is <0. There is more order due to the phase change.

$2^{\text {nd }}$ Law of Thermodynamics

- $\Delta \mathrm{S}_{\text {sys }}$ is the entropy change for the reaction that we just calculated.
- $\Delta \mathrm{S}_{\text {surr }}$ is related to the enthalpy of the system; if Heat flows into the surroundings then their entropy increases due to increased motion.

Standard Entropy Values (S°)

Which phase has the lowest entropy? Highest?

Substance	$\mathrm{S}^{\boldsymbol{o}}\left(\mathbf{J ~ m o l}^{-1} \mathbf{K}^{-1}\right)$	Substance	$\mathbf{S}^{\boldsymbol{o}}\left(\mathbf{J ~ m o l}^{\mathbf{- 1}} \mathbf{K}^{\mathbf{- 1}}\right)$
$\mathrm{C}(\mathrm{s}$, diamond $)$	2.38	$\mathrm{H}(\mathrm{g})$	114.6
$\mathrm{C}(\mathrm{s}$, graphite $)$	5.740	$\mathrm{H}_{2}(\mathrm{~g})$	130.57
$\mathrm{Al}(\mathrm{s})$	28.3	$\mathrm{CH}_{4}(\mathrm{~g})$	186.3
$\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$	50.92	$\mathrm{HCl}(\mathrm{g})$	186.8
$\mathrm{BaSO}_{4}(\mathrm{~s})$	132.2	$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	188.8
		$\mathrm{CO}(\mathrm{g})$	197.7
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	70.0	$\mathrm{CO}_{2}(\mathrm{~g})$	213.8
$\mathrm{Hg}_{(1)}(\mathrm{l})$	75.9	$\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$	219.3
$\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l})$	109.6	$\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$	229.5
$\mathrm{Br}_{2}(\mathrm{l})$	152.23	$\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$	239.9
$\mathrm{CCl}_{4}(\mathrm{l})$	214.4	$\mathrm{CCl}_{4}(\mathrm{~g})$	309.7

Note: The standard entropy for a pure element in its most stable form is NOT zero (like for ΔH°).

$2^{\text {nd }}$ Law of Thermodynamics

- $2^{\text {nd }}$ Law of Thermodynamics: in any spontaneous process, the total entropy of a system and its surroundings always increases. (system $=$ reaction)
- $\Delta \mathrm{S}_{\text {total }}=\Delta \mathrm{S}_{\text {system }}+\Delta \mathrm{S}_{\text {surroundings }}$
- $\Delta \mathrm{S}_{\text {total }}>0$, the reaction is spontaneous
- $\Delta \mathrm{S}_{\text {total }}<0$, the reaction is nonspontaneous
- $\Delta \mathrm{S}_{\text {total }}=0$, the reaction is at equilibrium
- All reactions proceed spontaneously in a direction that increases the entropy of the system plus the surroundings.

Calculating $\Delta \mathrm{S}_{\text {surr }}$

- Exothermic: heat flows from system to surroundings, surroundings have more energy = more disorder. (Hotter particles have more motion) $\rightarrow \Delta \mathrm{S}_{\text {surr }}>0$ when exothermic: $\Delta \mathrm{H}<0$
- Endothermic: heat flows into system from surroundings, surroundings have less energy which gives them more order.
$-\Delta \mathrm{S}_{\text {surr }}<0$ when endothermic: $\Delta \mathrm{H}>0$
- Therefore: $\Delta \mathrm{S}_{\text {surr }}=-\Delta \mathrm{H}_{\text {sys }} / T$
- $\Delta \mathrm{S}_{\text {Tot }}=\Delta \mathrm{S}_{\text {sys }}-\Delta \mathrm{H}_{\text {sys }} / \mathrm{T}$

Gibbs free energy (G) or free energy

G is the maximum amount of energy available to do work on the surroundings.

- Takes into account enthalpy and entropy to predict spontaneity of a reaction.
- $\Delta G=\Delta H-T \Delta S \quad$ ($\Delta \mathrm{G}$ units: $\mathrm{kJ} / \mathrm{mol}$)
- T must be in Kelvin! Watch units!
- The actual amount of work ($\mathrm{w}_{\text {max }}$) obtained is always less than the maximum available because of energy lost in carrying out a process (given off as heat, light, sound, etc. energy).
- In any spontaneous process (constant T and P), the free energy of the system always decreases!

Free Energy sign is T dependent when enthalpy and entropy have same sign!

- Notice that the T Δ S term is temperature dependent. Temperature plays a part in predicting spontaneity.
- Endothermic processes are spontaneous at higher temps ($\mathrm{T} \Delta \mathrm{S}>\Delta \mathrm{H}$)
- Exothermic processes are spontaneous at lower temps ($\mathrm{T} \Delta \mathrm{S}<\Delta \mathrm{H}$)

Predicting sign for Free Energy Change

- $\Delta G<0 \Rightarrow$ Spontaneous process
- $\Delta G>0 \Rightarrow$ Nonspontaneous process
- $\Delta \mathrm{G}=0 \Rightarrow$ Process is at equilibrium

$$
\Delta G=\Delta H-T \Delta S
$$

Calculating Entropy of Vaporization

- Phase changes occur at eq: $\Delta \mathrm{S}=\Delta \mathrm{H} / \mathrm{T}$
- The boiling point of water is $100^{\circ} \mathrm{C}$ and the enthalpy change for the conversion of water to steam is $\Delta \mathrm{H}_{\text {vap }}=40.67 \mathrm{~kJ} / \mathrm{mol}$. What is the entropy change for vaporization, $\Delta \mathrm{S}_{\text {vap }}$, in $\mathrm{J} /(\mathrm{K} \cdot \mathrm{mol})$?
- $\Delta \mathrm{S}_{\text {vap }}=\Delta \mathrm{H}_{\text {vap }} / \mathrm{T}$
- $\Delta \mathrm{S}_{\text {vap }}=\frac{40.67 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \times \frac{1000 \mathrm{~J}}{1 \mathrm{~kJ}}}{373 \mathrm{~K}}=109 \frac{\mathrm{~J}}{\mathrm{~K} \cdot \mathrm{~mol}}$

Find T for spontaneous rxn

- Calculate $\Delta \mathrm{G}$ given $\Delta \mathrm{H}=-227 \mathrm{~kJ}, \Delta \mathrm{~S}=-309$ $\mathrm{J} / \mathrm{K}, \mathrm{T}=1450 \mathrm{~K}$.

Is this process spontaneous at this temperature? If not, calculate the temperature (in ${ }^{\circ} \mathrm{C}$) at which this reaction becomes spontaneous. (Hint: set $\Delta \mathrm{G}=0$ and solve for T !)

Find T spontaneous rxn

- $\Delta \mathrm{G}=+221 \mathrm{~kJ}$; not spontaneous
- $\Delta \mathrm{G}=0 ; \Delta \mathrm{H}=\mathrm{T} \Delta \mathrm{S}$
- $\mathrm{T}=\Delta \mathrm{H} / \Delta \mathrm{S}=-227 \mathrm{~kJ} /-0.309 \mathrm{~kJ} / \mathrm{K}$
- $\mathrm{T}=735 \mathrm{~K}=462{ }^{\circ} \mathrm{C}$
- Spontaneous when $\mathrm{T}<462^{\circ} \mathrm{C}$
- (entropy \& enthalpy are both -, so it is spontaneous at T below equilibrium T .)

Standard Free Energy Changes

$\Delta \mathrm{G}$ depends on $\mathrm{T}, \mathrm{P},[\mathrm{l}$ and physical states (like $\Delta \mathrm{H}$ and S).
Standard-state conditions:

- Solids, liquids, and gases in pure form
- 1 M Solutions, gases at 1 atm pressure
- Room temperature: $25^{\circ} \mathrm{C}$ (298 K)

Standard free energy change ($\Delta \mathbf{G}^{\circ}$) is the free energy change when reactants in their standard states are converted to products in their standard states.

Standard Free Energy Changes

1) Can get ΔG° from $\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}$

- Use $\Delta \mathrm{G}^{\circ}$ to predict spontaneity in the standard state

2) ΔG° can also be calculated from standard free energies of formation: $\left(\Delta \mathrm{G}_{\mathrm{f}}{ }_{\mathrm{f}}\right)$
$\Delta \Delta \mathrm{G}_{\mathrm{rxn}}=\Sigma \mathrm{n} \Delta \mathrm{G}_{\mathrm{f}}{ }_{\mathrm{f}}$ (products) $-\Sigma \mathrm{n} \Delta \mathrm{G}_{\mathrm{f}}{ }_{\mathrm{f}}$ (reactants)
$\Delta \Delta \mathrm{G}^{\mathrm{o}}{ }_{\mathrm{F}}=$ standard free energy of formation: the free energy change when 1 mole of a compound is formed from its elements in their standard states.
$-\Delta \mathbf{G}^{\circ}{ }_{\mathrm{f}}=\mathbf{0}$ for an element in its stable form

- Values of $\Delta \mathbf{G}^{\circ}{ }_{\mathrm{f}}, \Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}, \mathbf{S}^{\circ}$ are listed in Appendix

$\Delta \mathrm{G}^{\circ}$ calculation	$\Delta \mathrm{G}_{\mathrm{i}}{ }^{\circ} \mathrm{in} \mathrm{kJ} / \mathrm{mol}$	
	$\mathrm{CaO}(\mathrm{s})$	-604.20
	$\mathrm{Ca}(\mathrm{OH})_{2}$	-896.76
		-228.59
	$\mathrm{H}_{2} \mathrm{O}(1)$	-237.18

$\Delta \mathbf{G}^{\circ}=\Sigma \mathbf{n} \Delta \mathbf{G}^{\circ}{ }_{\mathrm{f}}$ (products) $-\Sigma \mathrm{n} \Delta \mathbf{G}_{\mathrm{f}}^{\circ}$ (reactants)
Calculate $\Delta \mathrm{G}^{\circ}$ for these reactions and predict whether they will be spontaneous.

- $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
- $\mathrm{CaO}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrows \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})$
$* \Delta G^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right)=-457.18 \mathrm{~kJ}$, spontaneous
$\therefore \Delta \mathrm{G}^{\circ}\left(\mathrm{Ca}(\mathrm{OH})_{2}\right)=-55.38 \mathrm{~kJ}$, spontaneous

Relating $\Delta \mathrm{G}$ to $\Delta \mathrm{G}^{\circ}$ and Q

ΔG is the actual free energy - this is the free energy change under nonstandard conditions. It changes as a reaction proceeds, as concentrations and/or pressures change.
$\Delta \mathrm{G}^{\circ}$ IS standard and does NOT change during a reaction.
$\Delta G=\Delta G^{\circ}+R T \operatorname{InQ}$

- $\mathrm{Q}=$ Reaction Quotient (plug the given []'s and P's into Q)
- $\mathrm{R}=8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$, T in Kelvin

ΔG° and Equilibrium

$\Delta G^{\circ}<0\left(-\Delta G^{\circ}\right)$, product-favored

Free Energy Curve for $+\Delta \mathrm{G}^{\circ}$

$\Delta G^{\circ}>0$, Reactant favored

Calculating K from $\Delta \mathrm{G}^{\circ}$

$\Delta \mathrm{G}^{0}$ is $-24.7 \mathrm{~kJ} / \mathrm{mol}$ for the formation of methanol.
$\mathrm{C}(\mathrm{s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrows \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
Calculate the equilibrium constant, K , at $25^{\circ} \mathrm{C}$ for this reaction.
In $\mathrm{K}=-\Delta \mathrm{G} \circ / \mathrm{RT}=$
$-(-24.7 \mathrm{~kJ} / \mathrm{mol} /(0.008314 \mathrm{~kJ} / \mathrm{mol} \cdot \mathrm{K} \times 298 \mathrm{~K})$
In $\mathrm{K}=9.969 ; \mathrm{K}=\mathrm{e}^{9.969}=2.14 \times 10^{4}$

Free Energy and Equilibrium
$\Delta G=\Delta G^{0}+R T \ln Q$
At equilibrium, $\Delta \mathrm{G}=0$ and $\mathrm{Q}=\mathrm{K}$:
$\Delta G^{0}=-R T \ln K$

$\Delta \mathbf{G}^{0}$	\mathbf{K}	Comment
$\Delta \mathbf{G}^{o}<0$	$\mathrm{~K}>1$	Equilibrium mixture contains mostly products.
$\Delta \mathrm{G}^{\mathrm{o}}>0$	$\mathrm{~K}<1$	Equilibrium mixture contains mostly reactants.
$\Delta \mathrm{G}^{\mathrm{o}}=0$	$\mathrm{~K}=1$	Equilibrium mixture contains appreciable amount of reactants and products at equilibrium

Calculation $\Delta \mathrm{G}^{\circ}$ from K

At $25^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{a}}$ for acetic acid is 1.8×10^{-5}.
a) Predict the sign of $\Delta \mathrm{G}^{\circ}$ for
$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})$.
b) Calculate $\Delta \mathrm{G}^{\circ}$ at $25^{\circ} \mathrm{C}$.

- $\mathrm{K}<1$ so $\Delta \mathrm{G}^{\circ}$ is +
- $\Delta G^{0}=-(8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K})(298 \mathrm{~K})\left(\mathrm{In} 1.8 \times 10^{-5}\right)$
- $\Delta G^{\circ}=2.7 \times 10^{4} \mathrm{~J} / \mathrm{mol}$ (or $27 \mathrm{~kJ} / \mathrm{mol}$)

Find $\Delta \mathrm{G}$ for weak acid solution

Calculate $\Delta \mathrm{G}$ at $25^{\circ} \mathrm{C}$ for the acetic acid equilibrium reaction, when $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.020 \mathrm{M}$, $\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]=0.010 \mathrm{M}$ and $\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=$ 0.10 M . (Use $\Delta \mathrm{G}^{\circ}$ from part b.)
$\mathrm{Q}=(0.020)(0.010) /(0.10)=2.0 \times 10^{-3}$
$\Delta G=27 \mathrm{~kJ} / \mathrm{mol}+(0.008314 \mathrm{~kJ} / \mathrm{K} \cdot \mathrm{mol})(298 \mathrm{~K})(\ln 0.0020)$
$\Delta \mathrm{G}=12 \mathrm{~kJ} / \mathrm{mol}$ (nonspontaneous in forward direction) Note: $Q>K_{a}=1.8 \times 10^{-5}$ so reaction reverses to reach eq.

Calculate Nonstandard Free Energy

ΔG° for the reaction $\mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \leftrightarrows 2 \mathrm{HI}(g)$ is $2.60 \mathrm{~kJ} / \mathrm{mol}$ at $25^{\circ} \mathrm{C}$.
In one experiment, the initial pressures are $\mathrm{P}_{\mathrm{H}_{2}}=4.3 \mathrm{~atm}, \mathrm{P}_{\mathrm{I}_{2}}=0.34 \mathrm{~atm}$ and $\mathrm{P}_{\mathrm{HI}}=0.23 \mathrm{~atm}$.

- Calculate ΔG and predict the direction that this reaction will proceed.

$$
Q=0.0362
$$

$\Delta G=2.60 \mathrm{~kJ} / \mathrm{mol}+\left(8.314 \times 10^{-3} \mathrm{~kJ} / \mathrm{K} \cdot \mathrm{mol}\right)(298 \mathrm{~K})(\ln 0.0362)$
$\Delta G=-5.6 \mathrm{~kJ} / \mathrm{mol}$
Spontaneous so Eq shifts right

Calculations Practice

- Calculate $\Delta \mathrm{G}$ for $\mathrm{S}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrows \mathrm{SO}_{2}(\mathrm{~g})$ when $\mathrm{P}_{\mathrm{O} 2}=0.140 \mathrm{~atm}$ and $\mathrm{P}_{\mathrm{SO} 2}=1.24 \mathrm{~atm}$ at $25^{\circ} \mathrm{C}$.
- Need to calculate $\Delta \mathrm{G}^{0}$ and Q .
$\Delta \mathrm{G}^{\circ}{ }_{\mathrm{f}}(\mathrm{S}(\mathrm{s}))=0 \mathrm{~kJ} / \mathrm{mol} ; \Delta \mathrm{G}^{\circ}{ }_{\mathrm{f}}\left(\mathrm{O}_{2}(\mathrm{~g})\right)=0 \mathrm{~kJ} / \mathrm{mol} ; \Delta \mathrm{G}^{\circ}{ }_{\mathrm{f}}$
$\left.{ }^{(\mathrm{SO}}(\mathrm{g})\right)=-300.2 \mathrm{~kJ} / \mathrm{mol}$ $\left(\mathrm{SO}_{2}(\mathrm{~g})\right)=-300.2 \mathrm{~kJ} / \mathrm{mol}$
- $Q=1.24 \mathrm{~atm} / 0.140 \mathrm{~atm}=8.8571$
- $\Delta G^{\circ}=-300.2 \mathrm{~kJ}$
- $\Delta \mathrm{G}=-295 \mathrm{~kJ}$

