ELECTROCHEMISTRY PROBLEMS

- 1. For this reaction: $MnO_4^{-}(aq) + 8H^{+}(aq) + 5Fe^{2+}(aq) \rightarrow Mn^{2+}(aq) + 5Fe^{3+}(aq) + 4H_2O(I)$
 - a) What is the oxidation number for Mn in MnO₄ (aq)? _____
 - b) What is oxidized? _____ c) What is reduced? _____
 - d) What is the oxidizing agent? _______e) What is the reducing agent? _______
- 2. Based on their E^o_{red} values, determine the best oxidizing agent, best reducing agent, worst oxidizing agent, and worst reducing agent.

	Half-reaction	E_{red}°
	$\overline{\operatorname{Co}^{2+}(aq) + 2e^{-} \rightarrow \operatorname{Co}(s)}$	-0.28 V
	$\operatorname{Mn}^{2+}(aq) + 2e^{-} \rightarrow \operatorname{Mn}(s)$	-1.18 V
	$\operatorname{Cd}^{2+}(aq) + 2e^{-} \rightarrow \operatorname{Cd}(s)$	-0.40 V
	best oxidizing agent	best reducir
	worst oxidizing agent	worst reduc
3.	Which of the following will re	act spontaned

- A. Cd with Mn^{2+} B. Co with Cd^{2+} C. Mn with Co D. Mn with Cd^{2+} E. Co with Mn^{2+}
- 4. If we were to make a galvanic cell from the following metals, which would act as the anode and which as the cathode? Refer to table 19.1. Write the half-cell reactions and the overall balanced reaction for each cell. Calculate E^o_{cell} for each cell.

a) Fe(s) and Ni(s)	b) Cu(s) and Ag(s)
anode rxn:	anode rxn:
cathode rxn:	cathode rxn:
Overall:	Overall:
E ^o _{cell} =	E ^o _{cell} =

5. Use the information in the table below to answer the following questions

Half-reaction	E_{red}°
$Au^{3+} + 3e^- \rightarrow Au(s)$	1.50 V
$Br_2(I) + 2e^- \rightarrow 2Br^-(aq)$	1.07 V
$Pb^{2+} + 2e^- \rightarrow Pb(s)$	-0.13 V
Ni ²⁺ + 2e ⁻ → Ni(s)	-0.25 V

a) What will E^{o}_{cell} be if Ni(s) reacts with Au³⁺?

b) What will E^o_{cell} be if Pb²⁺ reacts with Br⁻?

c) Calculate E_{cell}^{o} for the following cell: Ni(s) | Ni²⁺(aq) || Br₂(l), Br(aq) | Pt(s)

d) Which of the reactions given in parts a-c are spontaneous?

- 6. Calculate ΔG° for the Ni(s) + Au³⁺ reaction in problem 5a.
- 7. Calculate K at 25° C for the Ni(s) + Br₂(l) reaction in question 5c.
- 8. A galvanic cell utilizes the following reaction:

 $2Ag^{+} + Pb(s) \rightarrow Pb^{2+} + 2Ag(s)$

a) Write the half cell reactions and calculate the cell emf under standard conditions.

b) Write the short-hand notation of this reaction.

c) Calculate the cell potential if $[Pb(NO_3)_2] = 0.88$ M and $[AgNO_3] = 0.14$ M.

9. A cell utilizes the following reaction and operates at 298 K:

 $2H^+(aq) + Zn(s) \rightarrow Zn^{2+}(aq) + H_2(g)$

a) Calculate E°_{cell} . (Look up E° values).

b) Calculate E_{cell} when $[Zn^{2+}] = 0.050$ M, $P_{H_2} = 0.25$ atm, and $[H^+] = 1.0 \times 10^{-4}$ M.

10. How many grams of Cu can be collected in 1.00 hour by a current of 1.62 A from a CuSO₄ solution?

11. A current of 2.00 amps is passed through a solution of Pb(NO₃)₂ until 6.35 grams of Pb metal has been deposited. How many seconds did the current flow?